imaginAIry/tests/conftest.py
2023-12-18 21:24:59 -08:00

229 lines
6.3 KiB
Python

import contextlib
import csv
import gc
import logging
import os
import sys
from functools import partialmethod
from shutil import rmtree
import pytest
import responses
import torch.cuda
from tqdm import tqdm
from urllib3 import HTTPConnectionPool
from imaginairy import api
from imaginairy.api import imagine
from imaginairy.schema import ImaginePrompt
from imaginairy.utils import (
fix_torch_group_norm,
fix_torch_nn_layer_norm,
get_device,
platform_appropriate_autocast,
)
from imaginairy.utils.log_utils import (
configure_logging,
suppress_annoying_logs_and_warnings,
)
from tests import TESTS_FOLDER
if "pytest" in str(sys.argv):
suppress_annoying_logs_and_warnings()
logger = logging.getLogger(__name__)
# SOLVERS_FOR_TESTING = SOLVER_TYPE_OPTIONS
# if get_device() == "mps:0":
# SOLVERS_FOR_TESTING = ["plms", "k_euler_a"]
# elif get_device() == "cpu":
# SOLVERS_FOR_TESTING = []
SOLVERS_FOR_TESTING = ["ddim", "dpmpp"]
@pytest.fixture(scope="session", autouse=True)
def _pre_setup():
api.IMAGINAIRY_SAFETY_MODE = "disabled"
suppress_annoying_logs_and_warnings()
test_output_folder = f"{TESTS_FOLDER}/test_output"
# delete the testoutput folder and recreate it
with contextlib.suppress(FileNotFoundError):
rmtree(test_output_folder)
os.makedirs(test_output_folder, exist_ok=True)
orig_urlopen = HTTPConnectionPool.urlopen
def urlopen_tattle(self, method, url, *args, **kwargs):
# traceback.print_stack()
# current_test = os.environ.get("PYTEST_CURRENT_TEST", "")
# print(f"{current_test} {method} {self.host}{url}")
result = orig_urlopen(self, method, url, *args, **kwargs)
# raise HTTPError("NO NETWORK CALLS")
return result
HTTPConnectionPool.urlopen = urlopen_tattle
tqdm.__init__ = partialmethod(tqdm.__init__, disable=True)
# real_randn = torch.randn
# def randn_tattle(*args, **kwargs):
# print("RANDN CALL RANDN CALL")
# traceback.print_stack()
# return real_randn(*args, **kwargs)
#
# torch.randn = randn_tattle
configure_logging("DEBUG")
with fix_torch_nn_layer_norm(), fix_torch_group_norm(), platform_appropriate_autocast():
yield
@pytest.fixture(autouse=True)
def _reset_get_device():
get_device.cache_clear()
@pytest.fixture()
def filename_base_for_outputs(request):
filename_base = f"{TESTS_FOLDER}/test_output/{request.node.name}_"
return filename_base
@pytest.fixture()
def filename_base_for_orig_outputs(request):
filename_base = f"{TESTS_FOLDER}/test_output/{request.node.originalname}_"
return filename_base
@pytest.fixture(params=SOLVERS_FOR_TESTING)
def solver_type(request):
return request.param
@pytest.fixture()
def mocked_responses():
with responses.RequestsMock() as rsps:
yield rsps
def pytest_addoption(parser):
parser.addoption(
"--subset",
action="store",
default=None,
help="Runs an exclusive subset of tests: '1/3', '2/3', '3/3'. Useful for distributed testing",
)
@pytest.fixture(scope="session")
def default_model_loaded():
"""
Just to make sure default weights are downloaded before the test runs
"""
prompt = ImaginePrompt(
"dogs lying on a hot pink couch",
size=64,
steps=2,
seed=1,
solver_type="ddim",
)
next(imagine(prompt))
cuda_tests_node_ids = []
cuda_test_tracker_filepath = f"{TESTS_FOLDER}/data/cuda-tests.csv"
@pytest.fixture(autouse=True)
def detect_cuda_tests(request):
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
start_memory = torch.cuda.max_memory_allocated()
yield
if torch.cuda.is_available():
end_memory = torch.cuda.max_memory_allocated()
memory_diff = end_memory - start_memory
if memory_diff > 0:
test_id = request.node.nodeid
print(f"Test {test_id} used {memory_diff} bytes of GPU memory")
cuda_tests_node_ids.append(test_id)
torch.cuda.empty_cache()
gc.collect()
@pytest.hookimpl()
def pytest_collection_modifyitems(config, items):
"""Only select a subset of tests to run, based on the --subset option."""
node_ids_to_mark = read_stored_cuda_test_nodes()
for item in items:
if item.nodeid in node_ids_to_mark:
item.add_marker(pytest.mark.gputest)
filtered_node_ids = set()
node_ids = [f.nodeid for f in items]
node_ids.sort()
subset = config.getoption("--subset")
if subset:
partition_no, total_partitions = subset.split("/")
partition_no, total_partitions = int(partition_no), int(total_partitions)
if partition_no < 1 or partition_no > total_partitions:
raise ValueError("Invalid subset")
for i, node_id in enumerate(node_ids):
if i % total_partitions == partition_no - 1:
filtered_node_ids.add(node_id)
items[:] = [i for i in items if i.nodeid in filtered_node_ids]
print(
f"Running subset {partition_no}/{total_partitions} {len(filtered_node_ids)} tests:"
)
filtered_node_ids = list(filtered_node_ids)
filtered_node_ids.sort()
for n in filtered_node_ids:
print(f" {n}")
def pytest_sessionstart(session):
from imaginairy.utils.debug_info import get_debug_info
debug_info = get_debug_info()
for k, v in debug_info.items():
if k == "nvidia_smi":
continue
k += ":"
print(f"{k: <30} {v}")
if "nvidia_smi" in debug_info:
print(debug_info["nvidia_smi"])
def pytest_sessionfinish(session, exitstatus):
existing_node_ids = read_stored_cuda_test_nodes()
updated_node_ids = existing_node_ids.union(set(cuda_tests_node_ids))
# Write updated, sorted list of node IDs to file
with open(cuda_test_tracker_filepath, "w", newline="") as file:
writer = csv.writer(file, lineterminator="\n")
for node_id in sorted(updated_node_ids):
writer.writerow([node_id])
def read_stored_cuda_test_nodes():
node_ids = set()
try:
with open(cuda_test_tracker_filepath, newline="") as file:
reader = csv.reader(file)
for row in reader:
node_ids.add(row[0])
except FileNotFoundError:
pass # File does not exist yet
return node_ids