# ImaginAIry 🤖🧠
AI imagined images. Pythonic generation of stable diffusion images.
"just works" on Linux and macOS(M1) (and maybe windows?).
## Examples
```bash
# on macOS, make sure rust is installed first
>> pip install imaginairy
>> imagine "a scenic landscape" "a photo of a dog" "photo of a fruit bowl" "portrait photo of a freckled woman"
```
Console Output
```bash
🤖🧠 received 4 prompt(s) and will repeat them 1 times to create 4 images.
Loading model onto mps backend...
Generating 🖼 : "a scenic landscape" 512x512px seed:557988237 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:29<00:00, 1.36it/s]
🖼 saved to: ./outputs/000001_557988237_PLMS40_PS7.5_a_scenic_landscape.jpg
Generating 🖼 : "a photo of a dog" 512x512px seed:277230171 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:28<00:00, 1.41it/s]
🖼 saved to: ./outputs/000002_277230171_PLMS40_PS7.5_a_photo_of_a_dog.jpg
Generating 🖼 : "photo of a fruit bowl" 512x512px seed:639753980 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:28<00:00, 1.40it/s]
🖼 saved to: ./outputs/000003_639753980_PLMS40_PS7.5_photo_of_a_fruit_bowl.jpg
Generating 🖼 : "portrait photo of a freckled woman" 512x512px seed:500686645 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:29<00:00, 1.37it/s]
🖼 saved to: ./outputs/000004_500686645_PLMS40_PS7.5_portrait_photo_of_a_freckled_woman.jpg
```
### Prompt Based Editing [by clipseg](https://github.com/timojl/clipseg)
Specify advanced text based masks using boolean logic and strength modifiers. Mask descriptions must be lowercase. Keywords uppercase.
Valid symbols: `AND`, `OR`, `NOT`, `()`, and mask strength modifier `{*1.5}` where `+` can be any of `+ - * /`. Single-character boolean
operators also work. When writing strength modifies know that pixel values are between 0 and 1.
```bash
>> imagine \
--init-image pearl_earring.jpg \
--mask-prompt "face AND NOT (bandana OR hair OR blue fabric){*6}" \
--mask-mode keep \
--init-image-strength .2 \
--fix-faces \
"a modern female president" "a female robot" "a female doctor" "a female firefighter"
```
➡️
```bash
>> imagine \
--init-image fruit-bowl.jpg \
--mask-prompt "fruit OR fruit stem{*1.5}" \
--mask-mode replace \
--mask-modify-original \
--init-image-strength .1 \
"a bowl of kittens" "a bowl of gold coins" "a bowl of popcorn" "a bowl of spaghetti"
```
➡️
### Face Enhancement [by CodeFormer](https://github.com/sczhou/CodeFormer)
```bash
>> imagine "a couple smiling" --steps 40 --seed 1 --fix-faces
```
➡️
### Upscaling [by RealESRGAN](https://github.com/xinntao/Real-ESRGAN)
```bash
>> imagine "colorful smoke" --steps 40 --upscale
```
➡️
### Tiled Images
```bash
>> imagine "gold coins" "a lush forest" "piles of old books" leaves --tile
```
### Image-to-Image
```bash
>> imagine "portrait of a smiling lady. oil painting" --init-image girl_with_a_pearl_earring.jpg
```
➡️
### Generate image captions
```bash
>> aimg describe assets/mask_examples/bowl001.jpg
a bowl full of gold bars sitting on a table
```
## Features
- It makes images from text descriptions! 🎉
- Generate images either in code or from command line.
- It just works. Proper requirements are installed. model weights are automatically downloaded. No huggingface account needed.
(if you have the right hardware... and aren't on windows)
- No more distorted faces!
- Noisy logs are gone (which was surprisingly hard to accomplish)
- WeightedPrompts let you smash together separate prompts (cat-dog)
- Tile Mode creates tileable images
- Prompt metadata saved into image file metadata
- Edit images by describing the part you want edited (see example above)
- Have AI generate captions for images `aimg describe `
- Interactive prompt: just run `aimg`
## How To
For full command line instructions run `aimg --help`
```python
from imaginairy import imagine, imagine_image_files, ImaginePrompt, WeightedPrompt, LazyLoadingImage
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Thomas_Cole_-_Architect%E2%80%99s_Dream_-_Google_Art_Project.jpg/540px-Thomas_Cole_-_Architect%E2%80%99s_Dream_-_Google_Art_Project.jpg"
prompts = [
ImaginePrompt("a scenic landscape", seed=1, upscale=True),
ImaginePrompt("a bowl of fruit"),
ImaginePrompt([
WeightedPrompt("cat", weight=1),
WeightedPrompt("dog", weight=1),
]),
ImaginePrompt(
"a spacious building",
init_image=LazyLoadingImage(url=url)
),
ImaginePrompt(
"a bowl of strawberries",
init_image=LazyLoadingImage(filepath="mypath/to/bowl_of_fruit.jpg"),
mask_prompt="fruit OR stem{*2}", # amplify the stem mask x2
mask_mode="replace",
mask_modify_original=True,
),
ImaginePrompt("strawberries", tile_mode=True),
]
for result in imagine(prompts):
# do something
result.save("my_image.jpg")
# or
imagine_image_files(prompts, outdir="./my-art")
```
## Requirements
- ~10 gb space for models to download
- A decent computer with either a CUDA supported graphics card or M1 processor.
- Python installed. Preferably Python 3.10.
- For macOS [rust must be installed](https://www.rust-lang.org/tools/install)
to compile the `tokenizer` library.
be installed via: `curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh`
## Running in Docker
See example Dockerfile (works on machine where you can pass the gpu into the container)
```bash
docker build . -t imaginairy
# you really want to map the cache or you end up wasting a lot of time and space redownloading the model weights
docker run -it --gpus all -v $HOME/.cache/huggingface:/root/.cache/huggingface -v $HOME/.cache/torch:/root/.cache/torch -v `pwd`/outputs:/outputs imaginairy /bin/bash
```
## Running on Google Colab
[Example Colab](https://colab.research.google.com/drive/1rOvQNs0Cmn_yU1bKWjCOHzGVDgZkaTtO?usp=sharing)
## ChangeLog
**2.2.0**
- feature: face enhancement fidelity is now configurable
**2.1.0**
- [improved masking accuracy from clipseg](https://github.com/timojl/clipseg/issues/8#issuecomment-1259150865)
**2.0.3**
- fix memory leak in face enhancer
- fix blurry inpainting
- fix for pillow compatibility
**2.0.0**
- 🎉 fix: inpainted areas correlate with surrounding image, even at 100% generation strength. Previously if the generation strength was high enough the generated image
would be uncorrelated to the rest of the surrounding image. It created terrible looking images.
- 🎉 feature: interactive prompt added. access by running `aimg`
- 🎉 feature: Specify advanced text based masks using boolean logic and strength modifiers. Mask descriptions must be lowercase. Keywords uppercase.
Valid symbols: `AND`, `OR`, `NOT`, `()`, and mask strength modifier `{+0.1}` where `+` can be any of `+ - * /`. Single character boolean operators also work (`|`, `&`, `!`)
- 🎉 feature: apply mask edits to original files with `mask_modify_original` (on by default)
- feature: auto-rotate images if exif data specifies to do so
- fix: mask boundaries are more accurate
- fix: accept mask images in command line
- fix: img2img algorithm was wrong and wouldn't at values close to 0 or 1
**1.6.2**
- fix: another bfloat16 fix
**1.6.1**
- fix: make sure image tensors come to the CPU as float32 so there aren't compatability issues with non-bfloat16 cpus
**1.6.0**
- fix: *maybe* address #13 with `expected scalar type BFloat16 but found Float`
- at minimum one can specify `--precision full` now and that will probably fix the issue
- feature: tile mode can now be specified per-prompt
**1.5.3**
- fix: missing config file for describe feature
**1.5.1**
- img2img now supported with PLMS (instead of just DDIM)
- added image captioning feature `aimg describe dog.jpg` => `a brown dog sitting on grass`
- added new commandline tool `aimg` for additional image manipulation functionality
**1.4.0**
- support multiple additive targets for masking with `|` symbol. Example: "fruit|stem|fruit stem"
**1.3.0**
- added prompt based image editing. Example: "fruit => gold coins"
- test coverage improved
**1.2.0**
- allow urls as init-images
** previous **
- img2img actually does # of steps you specify
- performance optimizations
- numerous other changes
## Not Supported
- a web interface. this is a python library
- training
## Todo
- performance optimizations
- ✅ https://github.com/huggingface/diffusers/blob/main/docs/source/optimization/fp16.mdx
- ✅ https://github.com/CompVis/stable-diffusion/compare/main...Doggettx:stable-diffusion:autocast-improvements#
- ✅ https://www.reddit.com/r/StableDiffusion/comments/xalaws/test_update_for_less_memory_usage_and_higher/
- https://github.com/neonsecret/stable-diffusion https://github.com/CompVis/stable-diffusion/pull/177
- https://github.com/huggingface/diffusers/pull/532/files
- https://github.com/HazyResearch/flash-attention
- ✅ deploy to pypi
- find similar images https://knn5.laion.ai/?back=https%3A%2F%2Fknn5.laion.ai%2F&index=laion5B&useMclip=false
- Development Environment
- ✅ add tests
- ✅ set up ci (test/lint/format)
- add docs
- remove yaml config
- delete more unused code
- Interface improvements
- ✅ init-image at command line
- prompt expansion
- ✅ interactive cli
- Image Generation Features
- ✅ add k-diffusion sampling methods
- negative prompting
- some syntax to allow it in a text string
- upscaling
- ✅ realesrgan
- ldm
- https://github.com/lowfuel/progrock-stable
- stable super-res?
- todo: try with 1-0-0-0 mask at full image resolution (rencoding entire image+predicted image at every step)
- todo: use a gaussian pyramid and only include the "high-detail" level of the pyramid into the next step
- https://www.reddit.com/r/StableDiffusion/comments/xkjjf9/upscale_to_huge_sizes_and_add_detail_with_sd/
- ✅ face enhancers
- ✅ gfpgan - https://github.com/TencentARC/GFPGAN
- ✅ codeformer - https://github.com/sczhou/CodeFormer
- ✅ image describe feature -
- ✅ https://github.com/salesforce/BLIP
- https://github.com/rmokady/CLIP_prefix_caption
- https://github.com/pharmapsychotic/clip-interrogator (blip + clip)
- https://github.com/KaiyangZhou/CoOp
- outpainting
- https://github.com/parlance-zz/g-diffuser-bot/search?q=noise&type=issues
- lama cleaner
- ✅ inpainting
- https://github.com/andreas128/RePaint
- img2img but keeps img stable
- https://www.reddit.com/r/StableDiffusion/comments/xboy90/a_better_way_of_doing_img2img_by_finding_the/
- https://gist.github.com/trygvebw/c71334dd127d537a15e9d59790f7f5e1
- https://github.com/pesser/stable-diffusion/commit/bbb52981460707963e2a62160890d7ecbce00e79
- https://github.com/SHI-Labs/FcF-Inpainting https://praeclarumjj3.github.io/fcf-inpainting/
- CPU support
- ✅ img2img for plms
- img2img for kdiff functions
- ✅ text based image masking
- https://github.com/facebookresearch/detectron2
- images as actual prompts instead of just init images
- requires model fine-tuning since SD1.4 expects 77x768 text encoding input
- https://twitter.com/Buntworthy/status/1566744186153484288
- https://github.com/justinpinkney/stable-diffusion
- https://github.com/LambdaLabsML/lambda-diffusers
- https://www.reddit.com/r/MachineLearning/comments/x6k5bm/n_stable_diffusion_image_variations_released/
- animations
- https://github.com/francislabountyjr/stable-diffusion/blob/main/inferencing_notebook.ipynb
- https://www.youtube.com/watch?v=E7aAFEhdngI
- https://github.com/pytti-tools/frame-interpolation
- cross-attention control:
- https://github.com/bloc97/CrossAttentionControl/blob/main/CrossAttention_Release_NoImages.ipynb
- guided generation
- https://colab.research.google.com/drive/1dlgggNa5Mz8sEAGU0wFCHhGLFooW_pf1#scrollTo=UDeXQKbPTdZI
- https://colab.research.google.com/github/aicrumb/doohickey/blob/main/Doohickey_Diffusion.ipynb#scrollTo=PytCwKXCmPid
- https://github.com/mlfoundations/open_clip
- https://github.com/openai/guided-diffusion
- ✅ tiling
- output show-work videos
- image variations https://github.com/lstein/stable-diffusion/blob/main/VARIATIONS.md
- textual inversion
- https://www.reddit.com/r/StableDiffusion/comments/xbwb5y/how_to_run_textual_inversion_locally_train_your/
- https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb#scrollTo=50JuJUM8EG1h
- https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion_textual_inversion_library_navigator.ipynb
- https://github.com/Jack000/glid-3-xl-stable
- fix saturation at high CFG https://www.reddit.com/r/StableDiffusion/comments/xalo78/fixing_excessive_contrastsaturation_resulting/
- https://www.reddit.com/r/StableDiffusion/comments/xbrrgt/a_rundown_of_twenty_new_methodsoptions_added_to/
## Noteable Stable Diffusion Implementations
- https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion
- https://github.com/lstein/stable-diffusion
- https://github.com/AUTOMATIC1111/stable-diffusion-webui
- https://github.com/blueturtleai/gimp-stable-diffusion
## Further Reading
- Differences between samplers
- https://www.reddit.com/r/StableDiffusion/comments/xbeyw3/can_anyone_offer_a_little_guidance_on_the/
- https://www.reddit.com/r/bigsleep/comments/xb5cat/wiskkeys_lists_of_texttoimage_systems_and_related/
- https://huggingface.co/blog/annotated-diffusion
- https://huggingface.co/blog/assets/78_annotated-diffusion/unet_architecture.jpg