import os.path import torch from PIL import ImageDraw from imaginairy import ImaginePrompt, LazyLoadingImage, imagine, imagine_image_files from imaginairy.api import load_model from imaginairy.img_log import ImageLoggingContext, filesafe_text, log_latent from imaginairy.img_utils import pillow_img_to_torch_image from imaginairy.modules.clip_embedders import FrozenCLIPEmbedder from imaginairy.samplers.ddim import DDIMSampler from imaginairy.utils import get_device from tests import TESTS_FOLDER def experiment_text_conditioning_combos(): """ Can we do math with the embeddings? Yes. it works but doesn't look great. """ embedder = FrozenCLIPEmbedder() embedder.to(get_device()) beach_e = embedder.encode(["a beach"]) beach_water_e = embedder.encode(["a beach. ocean, waves, water"]) waterness = beach_water_e - beach_e waterless_beach = beach_e - waterness imagine_image_files( [ImaginePrompt("waterless_beach", conditioning=waterless_beach, seed=1)], outdir=f"{TESTS_FOLDER}/test_output", ) imagine_image_files( [ImaginePrompt("waterness", conditioning=waterness, seed=1)], outdir=f"{TESTS_FOLDER}/test_output", ) imagine_image_files( [ImaginePrompt("beach", conditioning=beach_e, seed=1)], outdir=f"{TESTS_FOLDER}/test_output", ) def experiment_step_repeats(): """ Run the same step over and over on an image without noise Removes detail from the image. """ model = load_model() model.to(get_device()) model.eval() embedder = FrozenCLIPEmbedder() embedder.to(get_device()) sampler = DDIMSampler(model) sampler.make_schedule(1000) img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/beach_at_sainte_adresse.jpg") init_image, _, _ = pillow_img_to_torch_image( img, ) init_image = init_image.to(get_device()) init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) log_latent(init_latent, "init_latent") base_count = 1 neutral_embedding = embedder.encode([""]) outdir = f"{TESTS_FOLDER}/test_output" def _record_step(img, description, step_count, prompt): steps_path = os.path.join(outdir, "steps", f"{base_count:08}_S{prompt.seed}") os.makedirs(steps_path, exist_ok=True) filename = f"{base_count:08}_S{prompt.seed}_step{step_count:04}_{filesafe_text(description)[:40]}.png" destination = os.path.join(steps_path, filename) draw = ImageDraw.Draw(img) draw.text((10, 10), str(description)) img.save(destination) with ImageLoggingContext( prompt=ImaginePrompt(""), model=model, img_callback=_record_step, ): x_prev = init_latent index = 50 base_count = index t = torch.Tensor([index]).to(get_device()) # noise_pred = model.apply_model(init_latent, t, neutral_embedding) # log_latent(noise_pred, "noise prediction") for _ in range(100): x_prev, pred_x0 = sampler.p_sample_ddim(x_prev, neutral_embedding, t, index) log_latent(pred_x0, "pred_x0") x_prev = pred_x0 def experiment_repeated_img_2_img(): """ Experiment with putting an image repeatedly through image2image It creates screwy images """ outdir = f"{TESTS_FOLDER}/test_output/img2img2img" img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/beach_at_sainte_adresse.jpg") img.save(f"{outdir}/0.png") for step_num in range(50): prompt = ImaginePrompt( "Beach at Sainte Adresse. hyperealistic photo. sharp focus, canon 5d", init_image=img, init_image_strength=0.50, width=512, height=512, steps=50, sampler_type="DDIM", ) result = next(imagine(prompt)) img = result.img os.makedirs(outdir, exist_ok=True) img.save(f"{outdir}/{step_num:04}.png") def experiment_superresolution(): """ Try to trick it into making a superresolution image Did not work, resulting image was more blurry # i put this into the api.py file hardcoded row_a = torch.tensor([1, 0]).repeat(32) row_b = torch.tensor([0, 1]).repeat(32) grid = torch.stack([row_a, row_b]).repeat(32, 1) mask = grid mask = mask.to(get_device()) """ description = "a black and white photo of a dog's face" # image was a quarter of existing image img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/../outputs/dog02.jpg") # todo: try with 1000 mask at image resultion (rencoding entire image+predicted image at every step) # todo: use a gaussian pyramid and only include the "high-detail" level of the pyramid into the next step prompt = ImaginePrompt( description, init_image=img, init_image_strength=0.8, width=512, height=512, steps=50, seed=1, sampler_type="DDIM", ) out_folder = f"{TESTS_FOLDER}/test_output" imagine_image_files(prompt, outdir=out_folder)