# ImaginAIry 🤖🧠 AI imagined images. Pythonic generation of stable diffusion images. "just works" on Linux and OSX(M1). ## Examples ```bash >> pip install imaginairy >> imagine "a scenic landscape" "a photo of a dog" "photo of a fruit bowl" "portrait photo of a freckled woman" ```
Console Output ```bash 🤖🧠 received 4 prompt(s) and will repeat them 1 times to create 4 images. Loading model onto mps backend... Generating 🖼 : "a scenic landscape" 512x512px seed:557988237 prompt-strength:7.5 steps:40 sampler-type:PLMS PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:29<00:00, 1.36it/s] 🖼 saved to: ./outputs/000001_557988237_PLMS40_PS7.5_a_scenic_landscape.jpg Generating 🖼 : "a photo of a dog" 512x512px seed:277230171 prompt-strength:7.5 steps:40 sampler-type:PLMS PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:28<00:00, 1.41it/s] 🖼 saved to: ./outputs/000002_277230171_PLMS40_PS7.5_a_photo_of_a_dog.jpg Generating 🖼 : "photo of a fruit bowl" 512x512px seed:639753980 prompt-strength:7.5 steps:40 sampler-type:PLMS PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:28<00:00, 1.40it/s] 🖼 saved to: ./outputs/000003_639753980_PLMS40_PS7.5_photo_of_a_fruit_bowl.jpg Generating 🖼 : "portrait photo of a freckled woman" 512x512px seed:500686645 prompt-strength:7.5 steps:40 sampler-type:PLMS PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:29<00:00, 1.37it/s] 🖼 saved to: ./outputs/000004_500686645_PLMS40_PS7.5_portrait_photo_of_a_freckled_woman.jpg ```

### Tiled Images ```bash >> imagine "gold coins" "a lush forest" "piles of old books" leaves --tile ```
### Image-to-Image ```bash >> imagine "portrait of a smiling lady. oil painting" --init-image girl_with_a_pearl_earring.jpg ``` => ### Face Enhancement [by CodeFormer](https://github.com/sczhou/CodeFormer) ```bash >> imagine "a couple smiling" --steps 40 --seed 1 --fix-faces ``` => ### Upscaling [by RealESRGAN](https://github.com/xinntao/Real-ESRGAN) ```bash >> imagine "colorful smoke" --steps 40 --upscale ``` => ## Features - It makes images from text descriptions! 🎉 - Generate images either in code or from command line. - It just works. Proper requirements are installed. model weights are automatically downloaded. No huggingface account needed. (if you have the right hardware... and aren't on windows) - No more distorted faces! - Noisy logs are gone (which was surprisingly hard to accomplish) - WeightedPrompts let you smash together separate prompts (cat-dog) - Tile Mode creates tileable images - Prompt metadata saved into image file metadata ## How To ```python from imaginairy import imagine, imagine_image_files, ImaginePrompt, WeightedPrompt, LazyLoadingImage url = "https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Thomas_Cole_-_Architect%E2%80%99s_Dream_-_Google_Art_Project.jpg/540px-Thomas_Cole_-_Architect%E2%80%99s_Dream_-_Google_Art_Project.jpg" prompts = [ ImaginePrompt("a scenic landscape", seed=1), ImaginePrompt("a bowl of fruit"), ImaginePrompt([ WeightedPrompt("cat", weight=1), WeightedPrompt("dog", weight=1), ]), ImaginePrompt( "a spacious building", init_image=LazyLoadingImage(url) ) ] for result in imagine(prompts): # do something result.save("my_image.jpg") # or imagine_image_files(prompts, outdir="./my-art") ``` ## Requirements - ~10 gb space for models to download - A decent computer with either a CUDA supported graphics card or M1 processor. ## Running in Docker See example Dockerfile (works on machine where you can pass the gpu into the container) ```bash docker build . -t imaginairy # you really want to map the cache or you end up wasting a lot of time and space redownloading the model weights docker run -it --gpus all -v $HOME/.cache/huggingface:/root/.cache/huggingface -v $HOME/.cache/torch:/root/.cache/torch -v `pwd`/outputs:/outputs imaginairy /bin/bash ``` ## Improvements from CompVis - img2img actually does # of steps you specify - performance optimizations ## Models Used - CLIP - https://openai.com/blog/clip/ - LDM - Latent Diffusion - Stable Diffusion - https://github.com/CompVis/stable-diffusion - https://huggingface.co/CompVis/stable-diffusion-v1-4 - https://laion.ai/blog/laion-5b/ ## Not Supported - a web interface. this is a python library ## Todo - performance optimizations - ✅ https://github.com/huggingface/diffusers/blob/main/docs/source/optimization/fp16.mdx - ✅ https://github.com/CompVis/stable-diffusion/compare/main...Doggettx:stable-diffusion:autocast-improvements# - ✅ https://www.reddit.com/r/StableDiffusion/comments/xalaws/test_update_for_less_memory_usage_and_higher/ - https://github.com/neonsecret/stable-diffusion https://github.com/CompVis/stable-diffusion/pull/177 - ✅ deploy to pypi - find similar images https://knn5.laion.ai/?back=https%3A%2F%2Fknn5.laion.ai%2F&index=laion5B&useMclip=false - Development Environment - add tests - set up ci (test/lint/format) - add docs - remove yaml config - delete more unused code - Interface improvements - ✅ init-image at command line - prompt expansion - Image Generation Features - ✅ add k-diffusion sampling methods - why is k-diffusion so slow compared to plms? 2 it/s vs 8 it/s - upscaling - ✅ realesrgan - ldm - https://github.com/lowfuel/progrock-stable - ✅ face enhancers - ✅ gfpgan - https://github.com/TencentARC/GFPGAN - ✅ codeformer - https://github.com/sczhou/CodeFormer - image describe feature - https://replicate.com/methexis-inc/img2prompt - outpainting - inpainting - https://github.com/andreas128/RePaint - img2img but keeps img stable - https://www.reddit.com/r/StableDiffusion/comments/xboy90/a_better_way_of_doing_img2img_by_finding_the/ - https://gist.github.com/trygvebw/c71334dd127d537a15e9d59790f7f5e1 - CPU support - img2img for plms? - images as actual prompts instead of just init images - cross-attention control: - https://github.com/bloc97/CrossAttentionControl/blob/main/CrossAttention_Release_NoImages.ipynb - guided generation https://colab.research.google.com/drive/1dlgggNa5Mz8sEAGU0wFCHhGLFooW_pf1#scrollTo=UDeXQKbPTdZI - ✅ tiling - output show-work videos - image variations https://github.com/lstein/stable-diffusion/blob/main/VARIATIONS.md - textual inversion - https://www.reddit.com/r/StableDiffusion/comments/xbwb5y/how_to_run_textual_inversion_locally_train_your/ - https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb#scrollTo=50JuJUM8EG1h - https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion_textual_inversion_library_navigator.ipynb - fix saturation at high CFG https://www.reddit.com/r/StableDiffusion/comments/xalo78/fixing_excessive_contrastsaturation_resulting/ - https://www.reddit.com/r/StableDiffusion/comments/xbrrgt/a_rundown_of_twenty_new_methodsoptions_added_to/ ## Noteable Stable Diffusion Implementations - https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion - https://github.com/lstein/stable-diffusion - https://github.com/AUTOMATIC1111/stable-diffusion-webui ## Further Reading - Differences between samplers - https://www.reddit.com/r/StableDiffusion/comments/xbeyw3/can_anyone_offer_a_little_guidance_on_the/