# from https://github.com/XPixelGroup/BasicSR/blob/b0ee3c8414bd39da34f0216cd6bfd8110b85da60/basicsr/utils/img_util.py import math import os import cv2 import numpy as np import torch from torchvision.utils import make_grid def img2tensor(imgs, bgr2rgb=True, float32=True): """Numpy array to tensor. Args: imgs (list[ndarray] | ndarray): Input images. bgr2rgb (bool): Whether to change bgr to rgb. float32 (bool): Whether to change to float32. Returns: list[tensor] | tensor: Tensor images. If returned results only have one element, just return tensor. """ def _totensor(img, bgr2rgb, float32): if img.shape[2] == 3 and bgr2rgb: if img.dtype == "float64": img = img.astype("float32") img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.from_numpy(img.transpose(2, 0, 1)) if float32: img = img.float() return img if isinstance(imgs, list): return [_totensor(img, bgr2rgb, float32) for img in imgs] else: return _totensor(imgs, bgr2rgb, float32) def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): """Convert torch Tensors into image numpy arrays. After clamping to [min, max], values will be normalized to [0, 1]. Args: tensor (Tensor or list[Tensor]): Accept shapes: 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); 2) 3D Tensor of shape (3/1 x H x W); 3) 2D Tensor of shape (H x W). Tensor channel should be in RGB order. rgb2bgr (bool): Whether to change rgb to bgr. out_type (numpy type): output types. If ``np.uint8``, transform outputs to uint8 type with range [0, 255]; otherwise, float type with range [0, 1]. Default: ``np.uint8``. min_max (tuple[int]): min and max values for clamp. Returns: (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of shape (H x W). The channel order is BGR. """ if not ( torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor)) ): raise TypeError(f"tensor or list of tensors expected, got {type(tensor)}") if torch.is_tensor(tensor): tensor = [tensor] result = [] for _tensor in tensor: _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) n_dim = _tensor.dim() if n_dim == 4: img_np = make_grid( _tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False ).numpy() img_np = img_np.transpose(1, 2, 0) if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 3: img_np = _tensor.numpy() img_np = img_np.transpose(1, 2, 0) if img_np.shape[2] == 1: # gray image img_np = np.squeeze(img_np, axis=2) else: if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 2: img_np = _tensor.numpy() else: raise TypeError( f"Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}" ) if out_type == np.uint8: # Unlike MATLAB, numpy.unit8() WILL NOT round by default. img_np = (img_np * 255.0).round() img_np = img_np.astype(out_type) result.append(img_np) if len(result) == 1: result = result[0] return result def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)): """This implementation is slightly faster than tensor2img. It now only supports torch tensor with shape (1, c, h, w). Args: tensor (Tensor): Now only support torch tensor with (1, c, h, w). rgb2bgr (bool): Whether to change rgb to bgr. Default: True. min_max (tuple[int]): min and max values for clamp. """ output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0) output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255 output = output.type(torch.uint8).cpu().numpy() if rgb2bgr: output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) return output def imfrombytes(content, flag="color", float32=False): """Read an image from bytes. Args: content (bytes): Image bytes got from files or other streams. flag (str): Flags specifying the color type of a loaded image, candidates are `color`, `grayscale` and `unchanged`. float32 (bool): Whether to change to float32., If True, will also norm to [0, 1]. Default: False. Returns: ndarray: Loaded image array. """ img_np = np.frombuffer(content, np.uint8) imread_flags = { "color": cv2.IMREAD_COLOR, "grayscale": cv2.IMREAD_GRAYSCALE, "unchanged": cv2.IMREAD_UNCHANGED, } img = cv2.imdecode(img_np, imread_flags[flag]) if float32: img = img.astype(np.float32) / 255.0 return img def imwrite(img, file_path, params=None, auto_mkdir=True): """Write image to file. Args: img (ndarray): Image array to be written. file_path (str): Image file path. params (None or list): Same as opencv's :func:`imwrite` interface. auto_mkdir (bool): If the parent folder of `file_path` does not exist, whether to create it automatically. Returns: bool: Successful or not. """ if auto_mkdir: dir_name = os.path.abspath(os.path.dirname(file_path)) os.makedirs(dir_name, exist_ok=True) ok = cv2.imwrite(file_path, img, params) if not ok: raise OSError("Failed in writing images.") def crop_border(imgs, crop_border): """Crop borders of images. Args: imgs (list[ndarray] | ndarray): Images with shape (h, w, c). crop_border (int): Crop border for each end of height and weight. Returns: list[ndarray]: Cropped images. """ if crop_border == 0: return imgs else: if isinstance(imgs, list): return [ v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs ] else: return imgs[crop_border:-crop_border, crop_border:-crop_border, ...]