"""Classes and functions for managing AI models""" import logging import os import re import sys import urllib.parse from functools import lru_cache, wraps import requests import torch from huggingface_hub import ( HfFolder, hf_hub_download as _hf_hub_download, try_to_load_from_cache, ) from omegaconf import OmegaConf from refiners.foundationals.latent_diffusion import SD1UNet from refiners.foundationals.latent_diffusion.model import LatentDiffusionModel from safetensors.torch import load_file from imaginairy import config as iconfig from imaginairy.config import IMAGE_WEIGHTS_SHORT_NAMES, ModelArchitecture from imaginairy.modules import attention from imaginairy.utils import get_device, instantiate_from_config from imaginairy.utils.model_cache import memory_managed_model from imaginairy.utils.named_resolutions import normalize_image_size from imaginairy.utils.paths import PKG_ROOT logger = logging.getLogger(__name__) MOST_RECENTLY_LOADED_MODEL = None class HuggingFaceAuthorizationError(RuntimeError): pass def load_tensors(tensorfile, map_location=None): if tensorfile == "empty": # used for testing return {} if tensorfile.endswith((".ckpt", ".pth", ".bin")): return torch.load(tensorfile, map_location=map_location) if tensorfile.endswith(".safetensors"): return load_file(tensorfile, device=map_location) return load_file(tensorfile, device=map_location) # raise ValueError(f"Unknown tensorfile type: {tensorfile}") def load_state_dict(weights_location, half_mode=False, device=None): if device is None: device = get_device() if weights_location.startswith("http"): ckpt_path = get_cached_url_path(weights_location, category="weights") else: ckpt_path = weights_location logger.info(f"Loading model {ckpt_path} onto {get_device()} backend...") state_dict = None # weights_cache_key = (ckpt_path, half_mode) # if weights_cache_key in GLOBAL_WEIGHTS_CACHE: # return GLOBAL_WEIGHTS_CACHE.get(weights_cache_key) try: state_dict = load_tensors(ckpt_path, map_location="cpu") except FileNotFoundError as e: if e.errno == 2: logger.error( f'Error: "{ckpt_path}" not a valid path to model weights.\nPreconfigured models you can use: {IMAGE_WEIGHTS_SHORT_NAMES}.' ) sys.exit(1) raise except RuntimeError as e: err_str = str(e) if ( "PytorchStreamReader failed reading zip archive" in err_str and weights_location.startswith("http") ): logger.warning("Corrupt checkpoint. deleting and re-downloading...") os.remove(ckpt_path) ckpt_path = get_cached_url_path(weights_location, category="weights") state_dict = load_tensors(ckpt_path, map_location="cpu") if state_dict is None: raise state_dict = state_dict.get("state_dict", state_dict) if half_mode: state_dict = {k: v.half() for k, v in state_dict.items()} # change device state_dict = {k: v.to(device) for k, v in state_dict.items()} # GLOBAL_WEIGHTS_CACHE.set(weights_cache_key, state_dict) return state_dict def load_model_from_config(config, weights_location, half_mode=False): model = instantiate_from_config(config.model) base_model_dict = load_state_dict(weights_location, half_mode=half_mode) model.init_from_state_dict(base_model_dict) if half_mode: model = model.half() model.to(get_device()) model.eval() return model def load_model_from_config_old( config, weights_location, control_weights_locations=None, half_mode=False ): model = instantiate_from_config(config.model) base_model_dict = load_state_dict(weights_location, half_mode=half_mode) model.init_from_state_dict(base_model_dict) control_weights_locations = control_weights_locations or [] controlnets = [] for control_weights_location in control_weights_locations: controlnet_state_dict = load_state_dict( control_weights_location, half_mode=half_mode ) controlnet_state_dict = { k.replace("control_model.", ""): v for k, v in controlnet_state_dict.items() } controlnet = instantiate_from_config(model.control_stage_config) controlnet.load_state_dict(controlnet_state_dict) controlnet.to(get_device()) controlnets.append(controlnet) model.set_control_models(controlnets) if half_mode: model = model.half() print("halved") model.to(get_device()) print("moved to device") model.eval() print("set to eval mode") return model def add_controlnet(base_state_dict, controlnet_state_dict): """Merges a base sd15 model with a controlnet model.""" for key in controlnet_state_dict: base_state_dict[key] = controlnet_state_dict[key] return base_state_dict def get_diffusion_model( weights_location=iconfig.DEFAULT_MODEL_WEIGHTS, config_path="configs/stable-diffusion-v1.yaml", control_weights_locations=None, half_mode=None, for_inpainting=False, ): """ Load a diffusion model. Weights location may also be shortcut name, e.g. "SD-1.5" """ try: return _get_diffusion_model( weights_location, config_path, half_mode, for_inpainting, control_weights_locations=control_weights_locations, ) except HuggingFaceAuthorizationError as e: if for_inpainting: logger.warning( f"Failed to load inpainting model. Attempting to fall-back to standard model. {e!s}" ) return _get_diffusion_model( iconfig.DEFAULT_MODEL_WEIGHTS, config_path, half_mode, for_inpainting=False, control_weights_locations=control_weights_locations, ) raise def _get_diffusion_model( weights_location=iconfig.DEFAULT_MODEL_WEIGHTS, model_architecture="configs/stable-diffusion-v1.yaml", half_mode=None, for_inpainting=False, control_weights_locations=None, ): """ Load a diffusion model. Weights location may also be shortcut name, e.g. "SD-1.5" """ global MOST_RECENTLY_LOADED_MODEL model_weights_config = resolve_model_weights_config( model_weights=weights_location, default_model_architecture=model_architecture, for_inpainting=for_inpainting, ) # some models need the attention calculated in float32 if model_weights_config is not None: attention.ATTENTION_PRECISION_OVERRIDE = ( model_weights_config.forced_attn_precision ) else: attention.ATTENTION_PRECISION_OVERRIDE = "default" diffusion_model = _load_diffusion_model( config_path=model_weights_config.architecture.config_path, weights_location=weights_location, half_mode=half_mode, ) MOST_RECENTLY_LOADED_MODEL = diffusion_model if control_weights_locations: controlnets = [] for control_weights_location in control_weights_locations: controlnets.append(load_controlnet(control_weights_location, half_mode)) diffusion_model.set_control_models(controlnets) return diffusion_model def get_diffusion_model_refiners( weights_config: iconfig.ModelWeightsConfig, for_inpainting=False, dtype=None, ) -> LatentDiffusionModel: """Load a diffusion model.""" return _get_diffusion_model_refiners( weights_location=weights_config.weights_location, for_inpainting=for_inpainting, dtype=dtype, ) @lru_cache(maxsize=1) def _get_diffusion_model_refiners( weights_location: str, for_inpainting: bool = False, device=None, dtype=torch.float16, ) -> LatentDiffusionModel: """ Load a diffusion model. Weights location may also be shortcut name, e.g. "SD-1.5" """ from imaginairy.modules.refiners_sd import ( SD1AutoencoderSliced, StableDiffusion_1, StableDiffusion_1_Inpainting, ) global MOST_RECENTLY_LOADED_MODEL device = device or get_device() ( vae_weights, unet_weights, text_encoder_weights, ) = load_stable_diffusion_compvis_weights(weights_location) StableDiffusionCls: type[LatentDiffusionModel] if for_inpainting: unet = SD1UNet(in_channels=9) StableDiffusionCls = StableDiffusion_1_Inpainting else: unet = SD1UNet(in_channels=4) StableDiffusionCls = StableDiffusion_1 logger.debug(f"Using class {StableDiffusionCls.__name__}") sd = StableDiffusionCls( device=device, dtype=dtype, lda=SD1AutoencoderSliced(), unet=unet ) logger.debug("Loading VAE") sd.lda.load_state_dict(vae_weights) logger.debug("Loading text encoder") sd.clip_text_encoder.load_state_dict(text_encoder_weights) logger.debug("Loading UNet") sd.unet.load_state_dict(unet_weights, strict=False) logger.debug(f"'{weights_location}' Loaded") MOST_RECENTLY_LOADED_MODEL = sd sd.set_self_attention_guidance(enable=True) return sd @memory_managed_model("stable-diffusion", memory_usage_mb=1951) def _load_diffusion_model(config_path, weights_location, half_mode): model_config = OmegaConf.load(f"{PKG_ROOT}/{config_path}") # only run half-mode on cuda. run it by default half_mode = half_mode is None and get_device() == "cuda" model = load_model_from_config( config=model_config, weights_location=weights_location, half_mode=half_mode, ) return model @memory_managed_model("controlnet") def load_controlnet(control_weights_location, half_mode): controlnet_state_dict = load_state_dict( control_weights_location, half_mode=half_mode ) controlnet_state_dict = { k.replace("control_model.", ""): v for k, v in controlnet_state_dict.items() } control_stage_config = OmegaConf.load(f"{PKG_ROOT}/configs/control-net-v15.yaml")[ "model" ]["params"]["control_stage_config"] controlnet = instantiate_from_config(control_stage_config) controlnet.load_state_dict(controlnet_state_dict) controlnet.to(get_device()) return controlnet def resolve_model_weights_config( model_weights: str | iconfig.ModelWeightsConfig, default_model_architecture: str | None = None, for_inpainting: bool = False, ) -> iconfig.ModelWeightsConfig: """Resolve weight and config path if they happen to be shortcuts.""" if isinstance(model_weights, iconfig.ModelWeightsConfig): return model_weights if not isinstance(model_weights, str): msg = f"Invalid model weights: {model_weights}" raise ValueError(msg) # noqa if default_model_architecture is not None and not isinstance( default_model_architecture, str ): msg = f"Invalid model architecture: {default_model_architecture}" raise ValueError(msg) if for_inpainting: model_weights_config = iconfig.MODEL_WEIGHT_CONFIG_LOOKUP.get( f"{model_weights.lower()}-inpaint", None ) if model_weights_config: return model_weights_config model_weights_config = iconfig.MODEL_WEIGHT_CONFIG_LOOKUP.get( model_weights.lower(), None ) if model_weights_config: return model_weights_config if not default_model_architecture: msg = "You must specify the model architecture when loading custom weights." raise ValueError(msg) default_model_architecture = default_model_architecture.lower() model_architecture_config = None if for_inpainting: model_architecture_config = iconfig.MODEL_ARCHITECTURE_LOOKUP.get( f"{default_model_architecture}-inpaint", None ) if not model_architecture_config: model_architecture_config = iconfig.MODEL_ARCHITECTURE_LOOKUP.get( default_model_architecture, None ) if model_architecture_config is None: msg = f"Invalid model architecture: {default_model_architecture}" raise ValueError(msg) model_weights_config = iconfig.ModelWeightsConfig( name="Custom Loaded", aliases=[], architecture=model_architecture_config, weights_location=model_weights, defaults={}, ) return model_weights_config def get_model_default_image_size(model_architecture: str | ModelArchitecture | None): if isinstance(model_architecture, str): model_architecture = iconfig.MODEL_ARCHITECTURE_LOOKUP.get( model_architecture, None ) default_size = None if model_architecture: default_size = model_architecture.defaults.get("size") if default_size is None: default_size = 512 default_size = normalize_image_size(default_size) return default_size def get_current_diffusion_model(): return MOST_RECENTLY_LOADED_MODEL def get_cache_dir(): xdg_cache_home = os.getenv("XDG_CACHE_HOME", None) if xdg_cache_home is None: user_home = os.getenv("HOME", None) if user_home: xdg_cache_home = os.path.join(user_home, ".cache") if xdg_cache_home is not None: return os.path.join(xdg_cache_home, "imaginairy") return os.path.join(os.path.dirname(__file__), ".cached-aimg") def get_cached_url_path(url, category=None): """ Gets the contents of a url, but caches the response indefinitely. While we attempt to use the cached_path from huggingface transformers, we fall back to our own implementation if the url does not provide an etag header, which `cached_path` requires. We also skip the `head` call that `cached_path` makes on every call if the file is already cached. """ try: if url.startswith("https://huggingface.co"): return huggingface_cached_path(url) except (OSError, ValueError): pass filename = url.split("/")[-1] dest = get_cache_dir() if category: dest = os.path.join(dest, category) os.makedirs(dest, exist_ok=True) # Replace possibly illegal destination path characters safe_filename = re.sub('[*<>:"|?]', "_", filename) dest_path = os.path.join(dest, safe_filename) if os.path.exists(dest_path): return dest_path # check if it's saved at previous path and rename it old_dest_path = os.path.join(dest, filename) if os.path.exists(old_dest_path): os.rename(old_dest_path, dest_path) return dest_path r = requests.get(url) with open(dest_path, "wb") as f: f.write(r.content) return dest_path def check_huggingface_url_authorized(url): if not url.startswith("https://huggingface.co/"): return None token = HfFolder.get_token() headers = {} if token is not None: headers["authorization"] = f"Bearer {token}" response = requests.head(url, allow_redirects=True, headers=headers, timeout=5) if response.status_code == 401: msg = "Unauthorized access to HuggingFace model. This model requires a huggingface token. Please login to HuggingFace or set HUGGING_FACE_HUB_TOKEN to your User Access Token. See https://huggingface.co/docs/huggingface_hub/quick-start#login for more information" raise HuggingFaceAuthorizationError(msg) return None @wraps(_hf_hub_download) def hf_hub_download(*args, **kwargs): """ backwards compatible wrapper for huggingface's hf_hub_download. they changed the argument name from `use_auth_token` to `token` """ try: return _hf_hub_download(*args, **kwargs) except TypeError as e: if "unexpected keyword argument 'token'" in str(e): kwargs["use_auth_token"] = kwargs.pop("token") return _hf_hub_download(*args, **kwargs) raise def huggingface_cached_path(url): # bypass all the HEAD calls done by the default `cached_path` repo, commit_hash, filepath = extract_huggingface_repo_commit_file_from_url(url) dest_path = try_to_load_from_cache( repo_id=repo, revision=commit_hash, filename=filepath ) if not dest_path: check_huggingface_url_authorized(url) token = HfFolder.get_token() logger.info(f"Downloading {url} from huggingface") dest_path = hf_hub_download( repo_id=repo, revision=commit_hash, filename=filepath, token=token ) # make a refs folder so caching works # work-around for # https://github.com/huggingface/huggingface_hub/pull/1306 # https://github.com/brycedrennan/imaginAIry/issues/171 refs_url = dest_path[: dest_path.index("/snapshots/")] + "/refs/" os.makedirs(refs_url, exist_ok=True) return dest_path def extract_huggingface_repo_commit_file_from_url(url): parsed_url = urllib.parse.urlparse(url) path_components = parsed_url.path.strip("/").split("/") repo = "/".join(path_components[0:2]) assert path_components[2] == "resolve" commit_hash = path_components[3] filepath = "/".join(path_components[4:]) return repo, commit_hash, filepath def download_diffusers_weights(repo, sub, filename): from imaginairy.utils.model_manager import get_cached_url_path url = f"https://huggingface.co/{repo}/resolve/main/{sub}/{filename}" return get_cached_url_path(url, category="weights") @lru_cache def load_stable_diffusion_diffusers_weights(diffusers_repo, device=None): from imaginairy.utils import get_device from imaginairy.weight_management.conversion import cast_weights from imaginairy.weight_management.utils import ( COMPONENT_NAMES, FORMAT_NAMES, MODEL_NAMES, ) if device is None: device = get_device() vae_weights_path = download_diffusers_weights( repo=diffusers_repo, sub="vae", filename="diffusion_pytorch_model.safetensors" ) vae_weights = open_weights(vae_weights_path, device=device) vae_weights = cast_weights( source_weights=vae_weights, source_model_name=MODEL_NAMES.SD15, source_component_name=COMPONENT_NAMES.VAE, source_format=FORMAT_NAMES.DIFFUSERS, dest_format=FORMAT_NAMES.REFINERS, ) unet_weights_path = download_diffusers_weights( repo=diffusers_repo, sub="unet", filename="diffusion_pytorch_model.safetensors" ) unet_weights = open_weights(unet_weights_path, device=device) unet_weights = cast_weights( source_weights=unet_weights, source_model_name=MODEL_NAMES.SD15, source_component_name=COMPONENT_NAMES.UNET, source_format=FORMAT_NAMES.DIFFUSERS, dest_format=FORMAT_NAMES.REFINERS, ) text_encoder_weights_path = download_diffusers_weights( repo=diffusers_repo, sub="text_encoder", filename="model.safetensors" ) text_encoder_weights = open_weights(text_encoder_weights_path, device=device) text_encoder_weights = cast_weights( source_weights=text_encoder_weights, source_model_name=MODEL_NAMES.SD15, source_component_name=COMPONENT_NAMES.TEXT_ENCODER, source_format=FORMAT_NAMES.DIFFUSERS, dest_format=FORMAT_NAMES.REFINERS, ) return vae_weights, unet_weights, text_encoder_weights def open_weights(filepath, device=None): from imaginairy.utils import get_device if device is None: device = get_device() if "safetensor" in filepath.lower(): from refiners.fluxion.utils import safe_open with safe_open(path=filepath, framework="pytorch", device=device) as tensors: state_dict = { key: tensors.get_tensor(key) for key in tensors.keys() # noqa } else: import torch state_dict = torch.load(filepath, map_location=device) while "state_dict" in state_dict: state_dict = state_dict["state_dict"] return state_dict def load_stable_diffusion_compvis_weights(weights_url): from imaginairy.utils import get_device from imaginairy.utils.model_manager import get_cached_url_path from imaginairy.weight_management.conversion import cast_weights from imaginairy.weight_management.utils import ( COMPONENT_NAMES, FORMAT_NAMES, MODEL_NAMES, ) weights_path = get_cached_url_path(weights_url, category="weights") logger.info(f"Loading weights from {weights_path}") state_dict = open_weights(weights_path, device=get_device()) text_encoder_prefix = "cond_stage_model." cut_start = len(text_encoder_prefix) text_encoder_state_dict = { k[cut_start:]: v for k, v in state_dict.items() if k.startswith(text_encoder_prefix) } text_encoder_state_dict = cast_weights( source_weights=text_encoder_state_dict, source_model_name=MODEL_NAMES.SD15, source_component_name=COMPONENT_NAMES.TEXT_ENCODER, source_format=FORMAT_NAMES.COMPVIS, dest_format=FORMAT_NAMES.DIFFUSERS, ) text_encoder_state_dict = cast_weights( source_weights=text_encoder_state_dict, source_model_name=MODEL_NAMES.SD15, source_component_name=COMPONENT_NAMES.TEXT_ENCODER, source_format=FORMAT_NAMES.DIFFUSERS, dest_format=FORMAT_NAMES.REFINERS, ) vae_prefix = "first_stage_model." cut_start = len(vae_prefix) vae_state_dict = { k[cut_start:]: v for k, v in state_dict.items() if k.startswith(vae_prefix) } vae_state_dict = cast_weights( source_weights=vae_state_dict, source_model_name=MODEL_NAMES.SD15, source_component_name=COMPONENT_NAMES.VAE, source_format=FORMAT_NAMES.COMPVIS, dest_format=FORMAT_NAMES.DIFFUSERS, ) vae_state_dict = cast_weights( source_weights=vae_state_dict, source_model_name=MODEL_NAMES.SD15, source_component_name=COMPONENT_NAMES.VAE, source_format=FORMAT_NAMES.DIFFUSERS, dest_format=FORMAT_NAMES.REFINERS, ) unet_prefix = "model." cut_start = len(unet_prefix) unet_state_dict = { k[cut_start:]: v for k, v in state_dict.items() if k.startswith(unet_prefix) } unet_state_dict = cast_weights( source_weights=unet_state_dict, source_model_name=MODEL_NAMES.SD15, source_component_name=COMPONENT_NAMES.UNET, source_format=FORMAT_NAMES.COMPVIS, dest_format=FORMAT_NAMES.DIFFUSERS, ) unet_state_dict = cast_weights( source_weights=unet_state_dict, source_model_name=MODEL_NAMES.SD15, source_component_name=COMPONENT_NAMES.UNET, source_format=FORMAT_NAMES.DIFFUSERS, dest_format=FORMAT_NAMES.REFINERS, ) return vae_state_dict, unet_state_dict, text_encoder_state_dict