"""Classes and functions for attention mechanisms in neural networks""" import math from functools import lru_cache import psutil import torch import torch.nn.functional as F from einops import rearrange from torch import einsum, nn from imaginairy.modules.diffusion.util import checkpoint as checkpoint_eval from imaginairy.utils import get_device XFORMERS_IS_AVAILABLE = False try: if get_device() == "cuda": import xformers import xformers.ops XFORMERS_IS_AVAILABLE = True except ImportError: pass ALLOW_SPLITMEM = True ATTENTION_PRECISION_OVERRIDE = "default" class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): super().__init__() inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim project_in = ( nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim) ) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels): return torch.nn.GroupNorm( num_groups=32, num_channels=in_channels, eps=1e-6, affine=True ) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange( qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 ) k = k.softmax(dim=-1) context = torch.einsum("bhdn,bhen->bhde", k, v) out = torch.einsum("bhde,bhdn->bhen", context, q) out = rearrange( out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w ) return self.to_out(out) def get_mem_free_total(device): device_type = "mps" if device.type == "mps" else "cuda" if device_type == "cuda": stats = torch.cuda.memory_stats(device) mem_active = stats["active_bytes.all.current"] mem_reserved = stats["reserved_bytes.all.current"] mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_cuda + mem_free_torch mem_free_total *= 0.9 else: # if we don't add a buffer, larger images come out as noise mem_free_total = psutil.virtual_memory().available * 0.6 return mem_free_total @lru_cache(maxsize=1) def get_mps_gb_ram(): return psutil.virtual_memory().total / (1024**3) class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): super().__init__() inner_dim = dim_head * heads context_dim = context_dim if context_dim is not None else query_dim self.scale = dim_head**-0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def forward(self, x, context=None, mask=None): # from imaginairy.api import _global_mask_hack # # if mask is None and _global_mask_hack is not None: # mask = _global_mask_hack.to(torch.bool) if get_device() == "cuda" or "mps" in get_device(): # noqa if not XFORMERS_IS_AVAILABLE and ALLOW_SPLITMEM: return self.forward_splitmem(x, context=context, mask=mask) h = self.heads # print(x.shape) q = self.to_q(x) context = context if context is not None else x k = self.to_k(context) * self.scale v = self.to_v(context) q, k, v = (rearrange(t, "b n (h d) -> (b h) n d", h=h) for t in (q, k, v)) # force cast to fp32 to avoid overflowing if ATTENTION_PRECISION_OVERRIDE == "fp32": with torch.autocast(enabled=False, device_type=get_device()): q, k = q.float(), k.float() sim = einsum("b i d, b j d -> b i j", q, k) else: sim = einsum("b i d, b j d -> b i j", q, k) # print(sim.shape) # print("*" * 100) del q, k # if mask is not None: # if sim.shape[2] == 320 and False: # mask = [mask] * 2 # mask = rearrange(mask, "b ... -> b (...)") # _max_neg_value = -torch.finfo(sim.dtype).max # mask = repeat(mask, "b j -> (b h) () j", h=h) # sim.masked_fill_(~mask, _max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) out = einsum("b i j, b j d -> b i d", attn, v) out = rearrange(out, "(b h) n d -> b n (h d)", h=h) return self.to_out(out) def forward_splitmem(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) context = context if context is not None else x k_in = self.to_k(context) * self.scale v_in = self.to_v(context) del context, x q, k, v = ( rearrange(t, "b n (h d) -> (b h) n d", h=h) for t in (q_in, k_in, v_in) ) del q_in, k_in, v_in r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) mem_free_total = get_mem_free_total(q.device) gb = 1024**3 tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() modifier = 3 if q.element_size() == 2 else 2.5 mem_required = tensor_size * modifier steps = 1 if "mps" in get_device(): # https://github.com/brycedrennan/imaginAIry/issues/175 # https://github.com/invoke-ai/InvokeAI/issues/1244 mps_gb = get_mps_gb_ram() factor = 32 / mps_gb slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1] * 16 * factor)) else: if mem_required > mem_free_total: steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) if steps > 64: max_res = ( math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 ) msg = f"Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free" raise RuntimeError(msg) slice_size = ( q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] ) # steps = len(range(0, q.shape[1], slice_size)) # print(f"Splitting attention into {steps} steps of {slice_size} slices") for i in range(0, q.shape[1], slice_size): end = i + slice_size # force cast to fp32 to avoid overflowing if ATTENTION_PRECISION_OVERRIDE == "fp32": with torch.autocast(enabled=False, device_type=get_device()): q, k = q.float(), k.float() s1 = einsum("b i d, b j d -> b i j", q[:, i:end], k) else: s1 = einsum("b i d, b j d -> b i j", q[:, i:end], k) s2 = s1.softmax(dim=-1, dtype=q.dtype) del s1 r1[:, i:end] = einsum("b i j, b j d -> b i d", s2, v) del s2 del q, k, v r2 = rearrange(r1, "(b h) n d -> b n (h d)", h=h) del r1 return self.to_out(r2) class MemoryEfficientCrossAttention(nn.Module): # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): super().__init__() # print( # f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using " # f"{heads} heads." # ) inner_dim = dim_head * heads context_dim = context_dim if context_dim is not None else query_dim self.heads = heads self.dim_head = dim_head self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) self.attention_op = None def forward(self, x, context=None, mask=None): q = self.to_q(x) context = context if context is not None else x k = self.to_k(context) v = self.to_v(context) b, _, _ = q.shape q, k, v = ( t.unsqueeze(3) .reshape(b, t.shape[1], self.heads, self.dim_head) .permute(0, 2, 1, 3) .reshape(b * self.heads, t.shape[1], self.dim_head) .contiguous() for t in (q, k, v) ) # actually compute the attention, what we cannot get enough of out = xformers.ops.memory_efficient_attention( q, k, v, attn_bias=None, op=self.attention_op ) if mask is not None: raise NotImplementedError out = ( out.unsqueeze(0) .reshape(b, self.heads, out.shape[1], self.dim_head) .permute(0, 2, 1, 3) .reshape(b, out.shape[1], self.heads * self.dim_head) ) return self.to_out(out) class BasicTransformerBlock(nn.Module): ATTENTION_MODES = { "softmax": CrossAttention, # vanilla attention "softmax-xformers": MemoryEfficientCrossAttention, } def __init__( self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True, disable_self_attn=False, ): super().__init__() attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILABLE else "softmax" assert attn_mode in self.ATTENTION_MODES attn_cls = self.ATTENTION_MODES[attn_mode] self.disable_self_attn = disable_self_attn self.attn1 = attn_cls( query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=context_dim if self.disable_self_attn else None, ) # is a self-attention if not self.disable_self_attn self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = attn_cls( query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout, ) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, context=None): return checkpoint_eval( self._forward, (x, context), self.parameters(), self.checkpoint ) def _forward(self, x, context=None): x = x.contiguous() if x.device.type == "mps" else x x = ( self.attn1( self.norm1(x), context=context if self.disable_self_attn else None ) + x ) x = self.attn2(self.norm2(x), context=context) + x x = self.ff(self.norm3(x)) + x return x class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image NEW: use_linear for more efficiency instead of the 1x1 convs. """ def __init__( self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None, disable_self_attn=False, use_linear=False, use_checkpoint=True, ): super().__init__() if context_dim is not None and not isinstance(context_dim, list): context_dim = [context_dim] self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) if not use_linear: self.proj_in = nn.Conv2d( in_channels, inner_dim, kernel_size=1, stride=1, padding=0 ) else: self.proj_in = nn.Linear(in_channels, inner_dim) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, ) for d in range(depth) ] ) if not use_linear: self.proj_out = zero_module( nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) ) else: self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) self.use_linear = use_linear def forward(self, x, context=None): # note: if no context is given, cross-attention defaults to self-attention if not isinstance(context, list): context = [context] b, c, h, w = x.shape x_in = x x = self.norm(x) if self.use_linear: x = rearrange(x, "b c h w -> b (h w) c").contiguous() x = self.proj_in(x) for i, block in enumerate(self.transformer_blocks): x = block(x, context=context[i]) x = self.proj_out(x) x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() else: x = self.proj_in(x) x = rearrange(x, "b c h w -> b (h w) c") for i, block in enumerate(self.transformer_blocks): x = block(x, context=context[i]) x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) x = self.proj_out(x) return x + x_in