"""Functions for human pose estimation""" import math from collections import OrderedDict from functools import lru_cache import cv2 import matplotlib as mpl import numpy as np import torch from scipy.ndimage.filters import gaussian_filter from torch import nn from imaginairy.utils import get_device from imaginairy.utils.img_utils import torch_image_to_openvcv_img from imaginairy.utils.model_manager import get_cached_url_path def pad_right_down_corner(img, stride, padValue): h = img.shape[0] w = img.shape[1] pad = 4 * [None] pad[0] = 0 # up pad[1] = 0 # left pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right img_padded = img pad_up = np.tile(img_padded[0:1, :, :] * 0 + padValue, (pad[0], 1, 1)) img_padded = np.concatenate((pad_up, img_padded), axis=0) pad_left = np.tile(img_padded[:, 0:1, :] * 0 + padValue, (1, pad[1], 1)) img_padded = np.concatenate((pad_left, img_padded), axis=1) pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + padValue, (pad[2], 1, 1)) img_padded = np.concatenate((img_padded, pad_down), axis=0) pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + padValue, (1, pad[3], 1)) img_padded = np.concatenate((img_padded, pad_right), axis=1) return img_padded, pad def transfer(model, model_weights): # transfer caffe model to pytorch which will match the layer name transfered_model_weights = {} for weights_name in model.state_dict(): transfered_model_weights[weights_name] = model_weights[ ".".join(weights_name.split(".")[1:]) ] return transfered_model_weights # draw the body keypoint and lims def draw_bodypose(canvas, candidate, subset): stickwidth = 4 limbSeq = [ [2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], [1, 16], [16, 18], [3, 17], [6, 18], ] colors = [ [255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85], ] for i in range(18): for n in range(len(subset)): index = int(subset[n][i]) if index == -1: continue x, y = candidate[index][0:2] cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) for i in range(17): for n in range(len(subset)): index = subset[n][np.array(limbSeq[i]) - 1] if -1 in index: continue cur_canvas = canvas.copy() Y = candidate[index.astype(int), 0] X = candidate[index.astype(int), 1] mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly( (int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1 ) cv2.fillConvexPoly(cur_canvas, polygon, colors[i]) canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) # plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]]) # plt.imshow(canvas[:, :, [2, 1, 0]]) return canvas # image drawed by opencv is not good. def draw_handpose(canvas, all_hand_peaks, show_number=False): edges = [ [0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20], ] for peaks in all_hand_peaks: for ie, e in enumerate(edges): if np.sum(np.all(peaks[e], axis=1) == 0) == 0: x1, y1 = peaks[e[0]] x2, y2 = peaks[e[1]] cv2.line( canvas, (x1, y1), (x2, y2), mpl.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2, ) for i, keyponit in enumerate(peaks): x, y = keyponit cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) if show_number: cv2.putText( canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA, ) return canvas # detect hand according to body pose keypoints # please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp def handDetect(candidate, subset, oriImg): # right hand: wrist 4, elbow 3, shoulder 2 # left hand: wrist 7, elbow 6, shoulder 5 ratioWristElbow = 0.33 detect_result = [] image_height, image_width = oriImg.shape[0:2] for person in subset.astype(int): # if any of three not detected has_left = np.sum(person[[5, 6, 7]] == -1) == 0 has_right = np.sum(person[[2, 3, 4]] == -1) == 0 if not (has_left or has_right): continue hands = [] # left hand if has_left: left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]] x1, y1 = candidate[left_shoulder_index][:2] x2, y2 = candidate[left_elbow_index][:2] x3, y3 = candidate[left_wrist_index][:2] hands.append([x1, y1, x2, y2, x3, y3, True]) # right hand if has_right: right_shoulder_index, right_elbow_index, right_wrist_index = person[ [2, 3, 4] ] x1, y1 = candidate[right_shoulder_index][:2] x2, y2 = candidate[right_elbow_index][:2] x3, y3 = candidate[right_wrist_index][:2] hands.append([x1, y1, x2, y2, x3, y3, False]) for x1, y1, x2, y2, x3, y3, is_left in hands: # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]); # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]); # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow); # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder); # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder); x = x3 + ratioWristElbow * (x3 - x2) y = y3 + ratioWristElbow * (y3 - y2) distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2) distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) # x-y refers to the center --> offset to topLeft point # handRectangle.x -= handRectangle.width / 2.f; # handRectangle.y -= handRectangle.height / 2.f; x -= width / 2 y -= width / 2 # width = height # overflow the image x = max(x, 0) y = max(y, 0) width1 = width width2 = width if x + width > image_width: width1 = image_width - x if y + width > image_height: width2 = image_height - y width = min(width1, width2) # the max hand box value is 20 pixels if width >= 20: detect_result.append([int(x), int(y), int(width), is_left]) # return value: [[x, y, w, True if left hand else False]]. # width=height since the network require squared input. # x, y is the coordinate of top left return detect_result # get max index of 2d array def npmax(array): arrayindex = array.argmax(1) arrayvalue = array.max(1) i = arrayvalue.argmax() j = arrayindex[i] return i, j def make_layers(block, no_relu_layers): layers = [] for layer_name, v in block.items(): if "pool" in layer_name: layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2]) layers.append((layer_name, layer)) else: conv2d = nn.Conv2d( in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4], ) layers.append((layer_name, conv2d)) if layer_name not in no_relu_layers: layers.append(("relu_" + layer_name, nn.ReLU(inplace=True))) return nn.Sequential(OrderedDict(layers)) class bodypose_model(nn.Module): def __init__(self): super().__init__() # these layers have no relu layer no_relu_layers = [ "conv5_5_CPM_L1", "conv5_5_CPM_L2", "Mconv7_stage2_L1", "Mconv7_stage2_L2", "Mconv7_stage3_L1", "Mconv7_stage3_L2", "Mconv7_stage4_L1", "Mconv7_stage4_L2", "Mconv7_stage5_L1", "Mconv7_stage5_L2", "Mconv7_stage6_L1", "Mconv7_stage6_L1", ] blocks = {} block0 = OrderedDict( [ ("conv1_1", [3, 64, 3, 1, 1]), ("conv1_2", [64, 64, 3, 1, 1]), ("pool1_stage1", [2, 2, 0]), ("conv2_1", [64, 128, 3, 1, 1]), ("conv2_2", [128, 128, 3, 1, 1]), ("pool2_stage1", [2, 2, 0]), ("conv3_1", [128, 256, 3, 1, 1]), ("conv3_2", [256, 256, 3, 1, 1]), ("conv3_3", [256, 256, 3, 1, 1]), ("conv3_4", [256, 256, 3, 1, 1]), ("pool3_stage1", [2, 2, 0]), ("conv4_1", [256, 512, 3, 1, 1]), ("conv4_2", [512, 512, 3, 1, 1]), ("conv4_3_CPM", [512, 256, 3, 1, 1]), ("conv4_4_CPM", [256, 128, 3, 1, 1]), ] ) # Stage 1 block1_1 = OrderedDict( [ ("conv5_1_CPM_L1", [128, 128, 3, 1, 1]), ("conv5_2_CPM_L1", [128, 128, 3, 1, 1]), ("conv5_3_CPM_L1", [128, 128, 3, 1, 1]), ("conv5_4_CPM_L1", [128, 512, 1, 1, 0]), ("conv5_5_CPM_L1", [512, 38, 1, 1, 0]), ] ) block1_2 = OrderedDict( [ ("conv5_1_CPM_L2", [128, 128, 3, 1, 1]), ("conv5_2_CPM_L2", [128, 128, 3, 1, 1]), ("conv5_3_CPM_L2", [128, 128, 3, 1, 1]), ("conv5_4_CPM_L2", [128, 512, 1, 1, 0]), ("conv5_5_CPM_L2", [512, 19, 1, 1, 0]), ] ) blocks["block1_1"] = block1_1 blocks["block1_2"] = block1_2 self.model0 = make_layers(block0, no_relu_layers) # Stages 2 - 6 for i in range(2, 7): blocks[f"block{i}_1"] = OrderedDict( [ (f"Mconv1_stage{i}_L1", [185, 128, 7, 1, 3]), (f"Mconv2_stage{i}_L1", [128, 128, 7, 1, 3]), (f"Mconv3_stage{i}_L1", [128, 128, 7, 1, 3]), (f"Mconv4_stage{i}_L1", [128, 128, 7, 1, 3]), (f"Mconv5_stage{i}_L1", [128, 128, 7, 1, 3]), (f"Mconv6_stage{i}_L1", [128, 128, 1, 1, 0]), (f"Mconv7_stage{i}_L1", [128, 38, 1, 1, 0]), ] ) blocks[f"block{i}_2"] = OrderedDict( [ (f"Mconv1_stage{i}_L2", [185, 128, 7, 1, 3]), (f"Mconv2_stage{i}_L2", [128, 128, 7, 1, 3]), (f"Mconv3_stage{i}_L2", [128, 128, 7, 1, 3]), (f"Mconv4_stage{i}_L2", [128, 128, 7, 1, 3]), (f"Mconv5_stage{i}_L2", [128, 128, 7, 1, 3]), (f"Mconv6_stage{i}_L2", [128, 128, 1, 1, 0]), (f"Mconv7_stage{i}_L2", [128, 19, 1, 1, 0]), ] ) for k in blocks: blocks[k] = make_layers(blocks[k], no_relu_layers) self.model1_1 = blocks["block1_1"] self.model2_1 = blocks["block2_1"] self.model3_1 = blocks["block3_1"] self.model4_1 = blocks["block4_1"] self.model5_1 = blocks["block5_1"] self.model6_1 = blocks["block6_1"] self.model1_2 = blocks["block1_2"] self.model2_2 = blocks["block2_2"] self.model3_2 = blocks["block3_2"] self.model4_2 = blocks["block4_2"] self.model5_2 = blocks["block5_2"] self.model6_2 = blocks["block6_2"] def forward(self, x): out1 = self.model0(x) out1_1 = self.model1_1(out1) out1_2 = self.model1_2(out1) out2 = torch.cat([out1_1, out1_2, out1], 1) out2_1 = self.model2_1(out2) out2_2 = self.model2_2(out2) out3 = torch.cat([out2_1, out2_2, out1], 1) out3_1 = self.model3_1(out3) out3_2 = self.model3_2(out3) out4 = torch.cat([out3_1, out3_2, out1], 1) out4_1 = self.model4_1(out4) out4_2 = self.model4_2(out4) out5 = torch.cat([out4_1, out4_2, out1], 1) out5_1 = self.model5_1(out5) out5_2 = self.model5_2(out5) out6 = torch.cat([out5_1, out5_2, out1], 1) out6_1 = self.model6_1(out6) out6_2 = self.model6_2(out6) return out6_1, out6_2 class handpose_model(nn.Module): def __init__(self): super().__init__() # these layers have no relu layer no_relu_layers = [ "conv6_2_CPM", "Mconv7_stage2", "Mconv7_stage3", "Mconv7_stage4", "Mconv7_stage5", "Mconv7_stage6", ] # stage 1 block1_0 = OrderedDict( [ ("conv1_1", [3, 64, 3, 1, 1]), ("conv1_2", [64, 64, 3, 1, 1]), ("pool1_stage1", [2, 2, 0]), ("conv2_1", [64, 128, 3, 1, 1]), ("conv2_2", [128, 128, 3, 1, 1]), ("pool2_stage1", [2, 2, 0]), ("conv3_1", [128, 256, 3, 1, 1]), ("conv3_2", [256, 256, 3, 1, 1]), ("conv3_3", [256, 256, 3, 1, 1]), ("conv3_4", [256, 256, 3, 1, 1]), ("pool3_stage1", [2, 2, 0]), ("conv4_1", [256, 512, 3, 1, 1]), ("conv4_2", [512, 512, 3, 1, 1]), ("conv4_3", [512, 512, 3, 1, 1]), ("conv4_4", [512, 512, 3, 1, 1]), ("conv5_1", [512, 512, 3, 1, 1]), ("conv5_2", [512, 512, 3, 1, 1]), ("conv5_3_CPM", [512, 128, 3, 1, 1]), ] ) block1_1 = OrderedDict( [("conv6_1_CPM", [128, 512, 1, 1, 0]), ("conv6_2_CPM", [512, 22, 1, 1, 0])] ) blocks = {} blocks["block1_0"] = block1_0 blocks["block1_1"] = block1_1 # stage 2-6 for i in range(2, 7): blocks[f"block{i}"] = OrderedDict( [ (f"Mconv1_stage{i}", [150, 128, 7, 1, 3]), (f"Mconv2_stage{i}", [128, 128, 7, 1, 3]), (f"Mconv3_stage{i}", [128, 128, 7, 1, 3]), (f"Mconv4_stage{i}", [128, 128, 7, 1, 3]), (f"Mconv5_stage{i}", [128, 128, 7, 1, 3]), (f"Mconv6_stage{i}", [128, 128, 1, 1, 0]), (f"Mconv7_stage{i}", [128, 22, 1, 1, 0]), ] ) for k in blocks: blocks[k] = make_layers(blocks[k], no_relu_layers) self.model1_0 = blocks["block1_0"] self.model1_1 = blocks["block1_1"] self.model2 = blocks["block2"] self.model3 = blocks["block3"] self.model4 = blocks["block4"] self.model5 = blocks["block5"] self.model6 = blocks["block6"] def forward(self, x): out1_0 = self.model1_0(x) out1_1 = self.model1_1(out1_0) concat_stage2 = torch.cat([out1_1, out1_0], 1) out_stage2 = self.model2(concat_stage2) concat_stage3 = torch.cat([out_stage2, out1_0], 1) out_stage3 = self.model3(concat_stage3) concat_stage4 = torch.cat([out_stage3, out1_0], 1) out_stage4 = self.model4(concat_stage4) concat_stage5 = torch.cat([out_stage4, out1_0], 1) out_stage5 = self.model5(concat_stage5) concat_stage6 = torch.cat([out_stage5, out1_0], 1) out_stage6 = self.model6(concat_stage6) return out_stage6 @lru_cache(maxsize=1) def openpose_model(): model = bodypose_model() weights_url = "https://huggingface.co/lllyasviel/ControlNet/resolve/38a62cbf79862c1bac73405ec8dc46133aee3e36/annotator/ckpts/body_pose_model.pth" model_path = get_cached_url_path(weights_url) model_dict = transfer(model, torch.load(model_path)) model.load_state_dict(model_dict) model.eval() return model def create_body_pose_img(original_img_t): candidate, subset = create_body_pose(original_img_t) canvas = np.zeros((original_img_t.shape[2], original_img_t.shape[3], 3)) canvas = draw_bodypose(canvas, candidate, subset) canvas = torch.from_numpy(canvas).to(dtype=torch.float32) # canvas = canvas.unsqueeze(0) canvas = canvas.permute(2, 0, 1).unsqueeze(0) return canvas def create_body_pose(original_img_t): original_img = torch_image_to_openvcv_img(original_img_t) model = openpose_model() # scale_search = [0.5, 1.0, 1.5, 2.0] scale_search = [0.5] boxsize = 368 stride = 8 padValue = 128 thre1 = 0.1 thre2 = 0.05 multiplier = [x * boxsize / original_img.shape[0] for x in scale_search] heatmap_avg = np.zeros((original_img.shape[0], original_img.shape[1], 19)) paf_avg = np.zeros((original_img.shape[0], original_img.shape[1], 38)) for m, scale in enumerate(multiplier): imageToTest = cv2.resize( original_img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC ) imageToTest_padded, pad = pad_right_down_corner(imageToTest, stride, padValue) im = ( np.transpose( np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1) ) / 256 - 0.5 ) im = np.ascontiguousarray(im) data = torch.from_numpy(im).float() data.to(get_device()) # data = data.permute([2, 0, 1]).unsqueeze(0).float() with torch.no_grad(): Mconv7_stage6_L1, Mconv7_stage6_L2 = model(data) Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy() Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy() # extract outputs, resize, and remove padding # heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps heatmap = np.transpose( np.squeeze(Mconv7_stage6_L2), (1, 2, 0) ) # output 1 is heatmaps heatmap = cv2.resize( heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC ) heatmap = heatmap[ : imageToTest_padded.shape[0] - pad[2], : imageToTest_padded.shape[1] - pad[3], :, ] heatmap = cv2.resize( heatmap, (original_img.shape[1], original_img.shape[0]), interpolation=cv2.INTER_CUBIC, ) # paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs paf = cv2.resize( paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC ) paf = paf[ : imageToTest_padded.shape[0] - pad[2], : imageToTest_padded.shape[1] - pad[3], :, ] paf = cv2.resize( paf, (original_img.shape[1], original_img.shape[0]), interpolation=cv2.INTER_CUBIC, ) heatmap_avg += heatmap_avg + heatmap / len(multiplier) paf_avg += +paf / len(multiplier) all_peaks = [] peak_counter = 0 for part in range(18): map_ori = heatmap_avg[:, :, part] one_heatmap = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(one_heatmap.shape) map_left[1:, :] = one_heatmap[:-1, :] map_right = np.zeros(one_heatmap.shape) map_right[:-1, :] = one_heatmap[1:, :] map_up = np.zeros(one_heatmap.shape) map_up[:, 1:] = one_heatmap[:, :-1] map_down = np.zeros(one_heatmap.shape) map_down[:, :-1] = one_heatmap[:, 1:] peaks_binary = np.logical_and.reduce( ( one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1, ) ) peaks = list( zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) ) # note reverse peaks_with_score = [(*x, map_ori[x[1], x[0]]) for x in peaks] peak_id = range(peak_counter, peak_counter + len(peaks)) peaks_with_score_and_id = [ peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id)) ] all_peaks.append(peaks_with_score_and_id) peak_counter += len(peaks) # find connection in the specified sequence, center 29 is in the position 15 limbSeq = [ [2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], [1, 16], [16, 18], [3, 17], [6, 18], ] # the middle joints heatmap correpondence mapIdx = [ [31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], [55, 56], [37, 38], [45, 46], ] connection_all = [] special_k = [] mid_num = 10 for k in range(len(mapIdx)): score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]] candA = all_peaks[limbSeq[k][0] - 1] candB = all_peaks[limbSeq[k][1] - 1] nA = len(candA) nB = len(candB) indexA, indexB = limbSeq[k] if nA != 0 and nB != 0: connection_candidate = [] for i in range(nA): for j in range(nB): vec = np.subtract(candB[j][:2], candA[i][:2]) norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) norm = max(0.001, norm) vec = np.divide(vec, norm) startend = list( zip( np.linspace(candA[i][0], candB[j][0], num=mid_num), np.linspace(candA[i][1], candB[j][1], num=mid_num), ) ) vec_x = np.array( [ score_mid[ int(round(startend[I][1])), int(round(startend[I][0])), 0, ] for I in range(len(startend)) # noqa ] ) vec_y = np.array( [ score_mid[ int(round(startend[I][1])), int(round(startend[I][0])), 1, ] for I in range(len(startend)) # noqa ] ) score_midpts = np.multiply(vec_x, vec[0]) + np.multiply( vec_y, vec[1] ) score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min( 0.5 * original_img.shape[0] / norm - 1, 0 ) criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len( score_midpts ) criterion2 = score_with_dist_prior > 0 if criterion1 and criterion2: connection_candidate.append( [ i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2], ] ) connection_candidate = sorted( connection_candidate, key=lambda x: x[2], reverse=True ) connection = np.zeros((0, 5)) for c in range(len(connection_candidate)): i, j, s = connection_candidate[c][0:3] if i not in connection[:, 3] and j not in connection[:, 4]: connection = np.vstack( [connection, [candA[i][3], candB[j][3], s, i, j]] ) if len(connection) >= min(nA, nB): break connection_all.append(connection) else: special_k.append(k) connection_all.append([]) # last number in each row is the total parts number of that person # the second last number in each row is the score of the overall configuration subset = -1 * np.ones((0, 20)) candidate = np.array([item for sublist in all_peaks for item in sublist]) for k in range(len(mapIdx)): if k not in special_k: partAs = connection_all[k][:, 0] partBs = connection_all[k][:, 1] indexA, indexB = np.array(limbSeq[k]) - 1 for i in range(len(connection_all[k])): # = 1:size(temp,1) found = 0 subset_idx = [-1, -1] for j, row in enumerate(subset): # 1:size(subset,1): if row[indexA] == partAs[i] or row[indexB] == partBs[i]: subset_idx[found] = j found += 1 if found == 1: j = subset_idx[0] if subset[j][indexB] != partBs[i]: subset[j][indexB] = partBs[i] subset[j][-1] += 1 subset[j][-2] += ( candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] ) elif found == 2: # if found 2 and disjoint, merge them j1, j2 = subset_idx membership = ( (subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int) )[:-2] if len(np.nonzero(membership == 2)[0]) == 0: # merge subset[j1][:-2] += subset[j2][:-2] + 1 subset[j1][-2:] += subset[j2][-2:] subset[j1][-2] += connection_all[k][i][2] subset = np.delete(subset, j2, 0) else: # as like found == 1 subset[j1][indexB] = partBs[i] subset[j1][-1] += 1 subset[j1][-2] += ( candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] ) # if find no partA in the subset, create a new subset elif not found and k < 17: row = -1 * np.ones(20) row[indexA] = partAs[i] row[indexB] = partBs[i] row[-1] = 2 row[-2] = ( sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] ) subset = np.vstack([subset, row]) # delete some rows of subset which has few parts occur deleteIdx = [] for i, s in enumerate(subset): if s[-1] < 4 or s[-2] / s[-1] < 0.4: deleteIdx.append(i) subset = np.delete(subset, deleteIdx, axis=0) # subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts # candidate: x, y, score, id return candidate, subset