""" image utils. Library format cheat sheet: Library Dim Order Channel Order Value Range Type Pillow R, G, B, A 0-255 PIL.Image.Image OpenCV B, G, R, A 0-255 np.ndarray Torch (B), C, H, W R, G, B -1.0-1.0 torch.Tensor """ from typing import Sequence import numpy as np import PIL import torch from einops import rearrange, repeat from PIL import Image, ImageDraw, ImageFont from imaginairy.paths import PKG_ROOT from imaginairy.schema import LazyLoadingImage from imaginairy.utils import get_device def pillow_fit_image_within( image: PIL.Image.Image, max_height=512, max_width=512, convert="RGB", snap_size=8 ): image = image.convert(convert) w, h = image.size resize_ratio = 1 if w > max_width or h > max_height: resize_ratio = min(max_width / w, max_height / h) elif w < max_width and h < max_height: # it's smaller than our target image, enlarge resize_ratio = max(max_width / w, max_height / h) if resize_ratio != 1: w, h = int(w * resize_ratio), int(h * resize_ratio) # resize to integer multiple of snap_size w -= w % snap_size h -= h % snap_size if (w, h) != image.size: image = image.resize((w, h), resample=Image.Resampling.LANCZOS) return image def pillow_img_to_torch_image(img: PIL.Image.Image, convert="RGB"): if convert: img = img.convert(convert) img = np.array(img).astype(np.float32) / 255.0 # b, h, w, c => b, c, h, w img = img[None].transpose(0, 3, 1, 2) img = torch.from_numpy(img) return 2.0 * img - 1.0 def pillow_mask_to_latent_mask(mask_img: PIL.Image.Image, downsampling_factor): mask_img = mask_img.resize( ( mask_img.width // downsampling_factor, mask_img.height // downsampling_factor, ), resample=Image.Resampling.LANCZOS, ) mask = np.array(mask_img).astype(np.float32) / 255.0 mask = mask[None, None] mask = torch.from_numpy(mask) return mask def pillow_img_to_opencv_img(img: PIL.Image.Image): open_cv_image = np.array(img) # Convert RGB to BGR open_cv_image = open_cv_image[:, :, ::-1].copy() return open_cv_image def torch_image_to_openvcv_img(img: torch.Tensor): img = (img + 1) / 2 img = img.detach().cpu().numpy() # assert there is only one image assert img.shape[0] == 1 img = img[0] img = img.transpose(1, 2, 0) img = (img * 255).astype(np.uint8) # RGB to BGR img = img[:, :, ::-1] return img def torch_img_to_pillow_img(img_t: torch.Tensor): img_t = img_t.to(torch.float32).detach().cpu() if len(img_t.shape) == 3: img_t = img_t.unsqueeze(0) if img_t.shape[0] != 1: raise ValueError("Only batch size 1 supported") if img_t.shape[1] == 1: colorspace = "L" elif img_t.shape[1] == 3: colorspace = "RGB" else: raise ValueError( f"Unsupported colorspace. {img_t.shape[1]} channels in {img_t.shape} shape" ) img_t = rearrange(img_t, "b c h w -> b h w c") img_t = torch.clamp((img_t + 1.0) / 2.0, min=0.0, max=1.0) img_np = (255.0 * img_t).cpu().numpy().astype(np.uint8)[0] if colorspace == "L": img_np = img_np[:, :, 0] return Image.fromarray(img_np, colorspace) def model_latent_to_pillow_img(latent: torch.Tensor) -> PIL.Image.Image: from imaginairy.model_manager import get_current_diffusion_model # noqa if len(latent.shape) == 3: latent = latent.unsqueeze(0) if latent.shape[0] != 1: raise ValueError("Only batch size 1 supported") model = get_current_diffusion_model() img_t = model.decode_first_stage(latent) return torch_img_to_pillow_img(img_t) def model_latents_to_pillow_imgs(latents: torch.Tensor) -> Sequence[PIL.Image.Image]: return [model_latent_to_pillow_img(latent) for latent in latents] def pillow_img_to_model_latent(model, img, batch_size=1, half=True): init_image = pillow_img_to_torch_image(img).to(get_device()) init_image = repeat(init_image, "1 ... -> b ...", b=batch_size) if half: return model.get_first_stage_encoding( model.encode_first_stage(init_image.half()) ) return model.get_first_stage_encoding(model.encode_first_stage(init_image)) def imgpaths_to_imgs(imgpaths): imgs = [] for imgpath in imgpaths: if isinstance(imgpath, str): img = LazyLoadingImage(filepath=imgpath) imgs.append(img) else: imgs.append(imgpath) return imgs def add_caption_to_image( img, caption, font_size=16, font_path=f"{PKG_ROOT}/data/DejaVuSans.ttf" ): draw = ImageDraw.Draw(img) font = ImageFont.truetype(font_path, font_size) x = 15 y = img.height - 15 - font_size draw.text( (x, y), caption, font=font, fill=(255, 255, 255), stroke_width=3, stroke_fill=(0, 0, 0), )