"""Functions to create hint images for controlnet.""" def create_canny_edges(img): import cv2 import numpy as np import torch from einops import einops img = torch.clamp((img + 1.0) / 2.0, min=0.0, max=1.0) img = einops.rearrange(img[0], "c h w -> h w c") img = (255.0 * img).cpu().numpy().astype(np.uint8).squeeze() blurred = cv2.GaussianBlur(img, (5, 5), 0).astype(np.uint8) if len(blurred.shape) > 2: blurred = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY) threshold2, _ = cv2.threshold( blurred, thresh=0, maxval=255, type=(cv2.THRESH_BINARY + cv2.THRESH_OTSU) ) canny_image = cv2.Canny( blurred, threshold1=(threshold2 * 0.5), threshold2=threshold2 ) # canny_image = cv2.Canny(blur, 100, 200) canny_image = canny_image[:, :, None] # controlnet requires three channels canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2) canny_image = torch.from_numpy(canny_image).to(dtype=torch.float32) / 255.0 canny_image = einops.rearrange(canny_image, "h w c -> c h w").clone() canny_image = canny_image.unsqueeze(0) return canny_image def create_depth_map(img): import torch orig_size = img.shape[2:] depth_pt = _create_depth_map_raw(img) # copy the depth map to the other channels depth_pt = torch.cat([depth_pt, depth_pt, depth_pt], dim=0) depth_pt -= torch.min(depth_pt) depth_pt /= torch.max(depth_pt) depth_pt = depth_pt.unsqueeze(0) # depth_pt = depth_pt.cpu().numpy() depth_pt = torch.nn.functional.interpolate( depth_pt, size=orig_size, mode="bilinear", ) return depth_pt def _create_depth_map_raw(img): import torch from imaginairy.modules.midas.api import MiDaSInference, midas_device model = MiDaSInference(model_type="dpt_hybrid").to(midas_device()) img = img.to(midas_device()) max_size = 512 # calculate new size such that image fits within 512x512 but keeps aspect ratio if img.shape[2] > img.shape[3]: new_size = (max_size, int(max_size * img.shape[3] / img.shape[2])) else: new_size = (int(max_size * img.shape[2] / img.shape[3]), max_size) # resize torch image to be multiple of 32 img = torch.nn.functional.interpolate( img, size=(new_size[0] // 32 * 32, new_size[1] // 32 * 32), mode="bilinear", align_corners=False, ) depth_pt = model(img)[0] # noqa return depth_pt def create_normal_map(img): import cv2 import numpy as np import torch depth = _create_depth_map_raw(img) depth = depth[0] depth_pt = depth.clone() depth_pt -= torch.min(depth_pt) depth_pt /= torch.max(depth_pt) depth_pt = depth_pt.cpu().numpy() bg_th = 0.1 a = np.pi * 2.0 depth_np = depth.cpu().float().numpy() x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3) y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3) z = np.ones_like(x) * a x[depth_pt < bg_th] = 0 y[depth_pt < bg_th] = 0 normal = np.stack([x, y, z], axis=2) normal /= np.sum(normal**2.0, axis=2, keepdims=True) ** 0.5 normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8) normal_image = torch.from_numpy(normal_image[:, :, ::-1].copy()).float() / 255.0 normal_image = normal_image.permute(2, 0, 1).unsqueeze(0) return normal_image def create_hed_edges(img_t): import torch from imaginairy.img_processors.hed_boundary import create_hed_map from imaginairy.utils import get_device img_t = img_t.to(get_device()) # rgb to bgr img_t = img_t[:, [2, 1, 0], :, :] hint_t = create_hed_map(img_t) hint_t = hint_t.unsqueeze(0) hint_t = torch.cat([hint_t, hint_t, hint_t], dim=0) hint_t -= torch.min(hint_t) hint_t /= torch.max(hint_t) hint_t = (hint_t * 255).clip(0, 255).to(dtype=torch.uint8).float() / 255.0 hint_t = hint_t.unsqueeze(0) # hint_t = hint_t[:, [2, 0, 1], :, :] return hint_t def create_pose_map(img_t): from imaginairy.img_processors.openpose import create_body_pose_img from imaginairy.utils import get_device img_t = img_t.to(get_device()) pose_t = create_body_pose_img(img_t) / 255 # pose_t = pose_t[:, [2, 1, 0], :, :] return pose_t CONTROL_MODES = { "canny": create_canny_edges, "depth": create_depth_map, "normal": create_normal_map, "hed": create_hed_edges, # "mlsd": create_mlsd_edges, "openpose": create_pose_map, # "scribble": None, }