import os.path import pytest from imaginairy import LazyLoadingImage from imaginairy.api import imagine, imagine_image_files from imaginairy.img_processors.control_modes import CONTROL_MODES from imaginairy.img_utils import pillow_fit_image_within from imaginairy.schema import ControlNetInput, ImaginePrompt from imaginairy.utils import get_device from . import TESTS_FOLDER from .utils import assert_image_similar_to_expectation def test_imagine(sampler_type, filename_base_for_outputs): prompt_text = "a scenic old-growth forest with diffuse light poking through the canopy. high resolution nature photography" prompt = ImaginePrompt( prompt_text, width=512, height=512, steps=20, seed=1, sampler_type=sampler_type ) result = next(imagine(prompt)) threshold_lookup = {"k_dpm_2_a": 26000} threshold = threshold_lookup.get(sampler_type, 10000) img_path = f"{filename_base_for_outputs}.png" assert_image_similar_to_expectation( result.img, img_path=img_path, threshold=threshold ) compare_prompts = [ "a photo of a bowl of fruit", "a headshot photo of a happy couple smiling at the camera", "a painting of a beautiful cloudy sunset at the beach", "a photo of a dog", "a photo of a handshake", "a photo of an astronaut riding a horse on the moon. the earth visible in the background", ] @pytest.mark.skipif(get_device() != "cuda", reason="Too slow to run on CPU or MPS") @pytest.mark.parametrize( "model_version", ["SD-1.4", "SD-1.5", "SD-2.0", "SD-2.0-v", "SD-2.1", "SD-2.1-v"] ) def test_model_versions(filename_base_for_orig_outputs, model_version): """Test that we can switch between model versions.""" prompts = [] for prompt_text in compare_prompts: prompts.append( ImaginePrompt( prompt_text, seed=1, model=model_version, ) ) threshold = 35000 for i, result in enumerate(imagine(prompts)): img_path = f"{filename_base_for_orig_outputs}_{result.prompt.prompt_text}_{result.prompt.model}.png" result.img.save(img_path) for i, result in enumerate(imagine(prompts)): img_path = f"{filename_base_for_orig_outputs}_{result.prompt.prompt_text}_{result.prompt.model}.png" assert_image_similar_to_expectation( result.img, img_path=img_path, threshold=threshold ) def test_img2img_beach_to_sunset( sampler_type, filename_base_for_outputs, filename_base_for_orig_outputs ): img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/beach_at_sainte_adresse.jpg") prompt = ImaginePrompt( "a painting of beautiful cloudy sunset at the beach", init_image=img, init_image_strength=0.5, prompt_strength=15, mask_prompt="(sky|clouds) AND !(buildings|trees)", mask_mode="replace", width=512, height=512, steps=40 * 2, seed=1, sampler_type=sampler_type, ) result = next(imagine(prompt)) pillow_fit_image_within(img).save(f"{filename_base_for_orig_outputs}__orig.jpg") img_path = f"{filename_base_for_outputs}.png" assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=2900) def test_img_to_img_from_url_cats( sampler_type, filename_base_for_outputs, mocked_responses, filename_base_for_orig_outputs, ): with open( os.path.join(TESTS_FOLDER, "data", "val2017-000000039769-cococats.jpg"), "rb" ) as f: img_data = f.read() mocked_responses.get( "http://images.cocodataset.org/val2017/000000039769.jpg", body=img_data, status=200, content_type="image/jpeg", ) img = LazyLoadingImage(url="http://images.cocodataset.org/val2017/000000039769.jpg") prompt = ImaginePrompt( "dogs lying on a hot pink couch", init_image=img, init_image_strength=0.5, width=512, height=512, steps=50, seed=1, sampler_type=sampler_type, ) result = next(imagine(prompt)) img = pillow_fit_image_within(img) img.save(f"{filename_base_for_orig_outputs}__orig.jpg") img_path = f"{filename_base_for_outputs}.png" assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=17000) def test_img2img_low_noise( filename_base_for_outputs, sampler_type, ): fruit_path = os.path.join(TESTS_FOLDER, "data", "bowl_of_fruit.jpg") img = LazyLoadingImage(filepath=fruit_path) prompt = ImaginePrompt( "a white bowl filled with gold coins", prompt_strength=12, init_image=img, init_image_strength=0.5, mask_prompt="(fruit{*2} OR stem{*10} OR fruit stem{*3})", mask_mode="replace", # steps=40, seed=1, sampler_type=sampler_type, ) result = next(imagine(prompt)) threshold_lookup = { "k_dpm_2_a": 26000, "k_euler_a": 18000, "k_dpm_adaptive": 13000, } threshold = threshold_lookup.get(sampler_type, 14000) img_path = f"{filename_base_for_outputs}.png" assert_image_similar_to_expectation( result.img, img_path=img_path, threshold=threshold ) @pytest.mark.parametrize("init_strength", [0, 0.05, 0.2, 1]) def test_img_to_img_fruit_2_gold( filename_base_for_outputs, sampler_type, init_strength, filename_base_for_orig_outputs, ): img = LazyLoadingImage( filepath=os.path.join(TESTS_FOLDER, "data", "bowl_of_fruit.jpg") ) target_steps = 25 needed_steps = 25 if init_strength >= 1 else int(target_steps / (1 - init_strength)) prompt = ImaginePrompt( "a white bowl filled with gold coins", prompt_strength=12, init_image=img, init_image_strength=init_strength, mask_prompt="(fruit{*2} OR stem{*10} OR fruit stem{*3})", mask_mode="replace", steps=needed_steps, seed=1, sampler_type=sampler_type, ) result = next(imagine(prompt)) threshold_lookup = { "k_dpm_2_a": 32000, "k_euler_a": 18000, "k_dpm_adaptive": 13000, "k_dpmpp_2s": 16000, } threshold = threshold_lookup.get(sampler_type, 16000) pillow_fit_image_within(img).save(f"{filename_base_for_orig_outputs}__orig.jpg") img_path = f"{filename_base_for_outputs}.png" assert_image_similar_to_expectation( result.img, img_path=img_path, threshold=threshold ) @pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU") def test_img_to_img_fruit_2_gold_repeat(): img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/bowl_of_fruit.jpg") run_count = 1 kwargs = { "prompt": "a white bowl filled with gold coins. sharp focus", "prompt_strength": 12, "init_image": img, "init_image_strength": 0.2, "mask_prompt": "(fruit OR stem{*5} OR fruit stem)", "mask_mode": "replace", "steps": 20, "seed": 946188797, "sampler_type": "plms", "fix_faces": True, "upscale": True, } prompts = [ ImaginePrompt(**kwargs), ImaginePrompt(**kwargs), ImaginePrompt(**kwargs), ] for result in imagine(prompts, debug_img_callback=None): result.img.save( f"{TESTS_FOLDER}/test_output/img2img_fruit_2_gold_plms_{get_device()}_run-{run_count:02}.jpg" ) run_count += 1 @pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU") def test_img_to_file(): prompt = ImaginePrompt( "an old growth forest, diffuse light poking through the canopy. high-resolution, nature photography, nat geo photo", width=512 + 64, height=512 - 64, steps=20, seed=2, sampler_type="PLMS", upscale=True, ) out_folder = f"{TESTS_FOLDER}/test_output" imagine_image_files(prompt, outdir=out_folder) @pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU") def test_inpainting_bench(filename_base_for_outputs, filename_base_for_orig_outputs): img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/bench2.png") prompt = ImaginePrompt( "a wise old man", init_image=img, init_image_strength=0.4, mask_image=LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/bench2_mask.png"), width=512, height=512, steps=40, seed=1, sampler_type="plms", ) result = next(imagine(prompt)) pillow_fit_image_within(img).save(f"{filename_base_for_orig_outputs}_orig.jpg") img_path = f"{filename_base_for_outputs}.png" assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=2800) @pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU") def test_cliptext_inpainting_pearl_doctor( filename_base_for_outputs, filename_base_for_orig_outputs ): img = LazyLoadingImage( filepath=f"{TESTS_FOLDER}/data/girl_with_a_pearl_earring.jpg" ) prompt = ImaginePrompt( "a female doctor in the hospital", prompt_strength=12, init_image=img, init_image_strength=0.2, mask_prompt="face AND NOT (bandana OR hair OR blue fabric){*5}", mask_mode=ImaginePrompt.MaskMode.KEEP, width=512, height=512, steps=40, sampler_type="plms", seed=181509347, ) result = next(imagine(prompt)) pillow_fit_image_within(img).save(f"{filename_base_for_orig_outputs}_orig.jpg") img_path = f"{filename_base_for_outputs}.png" assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=32000) @pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU") def test_tile_mode(filename_base_for_outputs): prompt_text = "gold coins" prompt = ImaginePrompt( prompt_text, width=400, height=400, steps=15, seed=1, tile_mode="xy", ) result = next(imagine(prompt)) img_path = f"{filename_base_for_outputs}.png" assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=25000) control_modes = list(CONTROL_MODES.keys()) @pytest.mark.parametrize("control_mode", control_modes) @pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU") def test_controlnet(filename_base_for_outputs, control_mode): prompt_text = "a photo of a woman sitting on a bench" control_input = ControlNetInput( mode=control_mode, image=LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/bench2.png"), ) prompt = ImaginePrompt( prompt_text, width=512, height=512, steps=15, seed=0, control_inputs=[control_input], fix_faces=True, ) prompt.steps = 1 prompt.width = 256 prompt.height = 256 result = next(imagine(prompt)) prompt.steps = 15 prompt.width = 512 prompt.height = 512 result = next(imagine(prompt)) img_path = f"{filename_base_for_outputs}.png" assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=24000) @pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU") def test_large_image(filename_base_for_outputs): prompt_text = "a stormy ocean. oil painting" prompt = ImaginePrompt( prompt_text, width=1920, height=1080, steps=15, seed=0, ) result = next(imagine(prompt)) img_path = f"{filename_base_for_outputs}.png" assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=35000)