"""Functions for generating synthetic videos""" import logging import math import os import random import re import time from glob import glob from pathlib import Path from typing import Any, Optional import cv2 import numpy as np import torch from einops import rearrange, repeat from omegaconf import OmegaConf from PIL import Image from torchvision.transforms import ToTensor from imaginairy import config from imaginairy.enhancers.video_interpolation.rife.interpolate import interpolate_images from imaginairy.schema import LazyLoadingImage from imaginairy.utils import ( default, get_device, instantiate_from_config, platform_appropriate_autocast, ) from imaginairy.utils.animations import make_bounce_animation from imaginairy.utils.downloads import get_cached_url_path from imaginairy.utils.named_resolutions import normalize_image_size from imaginairy.utils.paths import PKG_ROOT logger = logging.getLogger(__name__) def generate_video( input_path: str, # Can either be image file or folder with image files output_folder: str | None = None, size=(1024, 576), num_frames: int = 6, num_steps: int = 30, model_name: str = "svd-xt", fps_id: int = 6, output_fps: int = 6, motion_bucket_id: int = 127, cond_aug: float = 0.02, seed: Optional[int] = None, decoding_t: int = 1, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. device: Optional[str] = None, repetitions=1, output_format="webp", ): """ Generates a video from a single image or multiple images, conditioned on the provided input_path. Args: input_path (str): Path to an image file or a directory containing image files. output_folder (str | None, optional): Directory where the generated video will be saved. Defaults to "outputs/video/" if None. num_frames (int, optional): Number of frames in the generated video. Defaults to 6. num_steps (int, optional): Number of steps for the generation process. Defaults to 30. model_name (str, optional): Name of the model to use for generation. Defaults to "svd_xt". fps_id (int, optional): Frame rate identifier used in generation. Defaults to 6. output_fps (int, optional): Frame rate of the output video. Defaults to 6. motion_bucket_id (int, optional): Identifier for motion bucket. Defaults to 127. cond_aug (float, optional): Conditional augmentation value. Defaults to 0.02. seed (Optional[int], optional): Random seed for generation. If None, a random seed is chosen. decoding_t (int, optional): Number of frames decoded at a time, affecting VRAM usage. Reduce if necessary. Defaults to 1. device (Optional[str], optional): Device to run the generation on. Defaults to the detected device. repetitions (int, optional): Number of times to repeat the video generation process. Defaults to 1. Returns: None: The function saves the generated video(s) to the specified output folder. """ device = default(device, get_device) vid_width, vid_height = normalize_image_size(size) if device == "mps": msg = "Apple Silicon MPS (M1, M2, etc) is not currently supported for video generation. Switching to cpu generation." logger.warning(msg) device = "cpu" elif not torch.cuda.is_available(): msg = ( "CUDA is not available. This will be verrrry slow or not work at all.\n" "If you have a GPU, make sure you have CUDA installed and PyTorch is compiled with CUDA support.\n" "Unfortunately, we cannot automatically install the proper version.\n\n" "You can install the proper version by following these directions:\n" "https://pytorch.org/get-started/locally/" ) logger.warning(msg) output_fps = default(output_fps, fps_id) model_name = model_name.lower().replace("_", "-") video_model_config = config.MODEL_WEIGHT_CONFIG_LOOKUP.get(model_name, None) if video_model_config is None: msg = f"Version {model_name} does not exist." raise ValueError(msg) num_frames = default(num_frames, video_model_config.defaults.get("frames", 12)) num_steps = default(num_steps, video_model_config.defaults.get("steps", 30)) output_folder_str = default(output_folder, "outputs/video/") del output_folder video_config_path = f"{PKG_ROOT}/{video_model_config.architecture.config_path}" model, safety_filter = load_model( config=video_config_path, device="cpu", num_frames=num_frames, num_steps=num_steps, weights_url=video_model_config.weights_location, ) if input_path.startswith("http"): all_img_paths = [input_path] else: path = Path(input_path) if path.is_file(): if any(input_path.endswith(x) for x in ["jpg", "jpeg", "png"]): all_img_paths = [input_path] else: raise ValueError("Path is not valid image file.") elif path.is_dir(): all_img_paths = sorted( [ str(f) for f in path.iterdir() if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"] ] ) if len(all_img_paths) == 0: raise ValueError("Folder does not contain any images.") else: msg = f"Could not find file or folder at {input_path}" raise FileNotFoundError(msg) expected_size = (vid_width, vid_height) for _ in range(repetitions): for input_path in all_img_paths: start_time = time.perf_counter() _seed = default(seed, random.randint(0, 1000000)) torch.manual_seed(_seed) logger.info( f"Generating a {num_frames} frame video from {input_path}. Device:{device} seed:{_seed}" ) if input_path.startswith("http"): image = LazyLoadingImage(url=input_path).as_pillow() else: image = LazyLoadingImage(filepath=input_path).as_pillow() crop_coords = None if image.mode == "RGBA": image = image.convert("RGB") if image.size != expected_size: logger.info( f"Resizing image from {image.size} to {expected_size}. (w, h)" ) image = pillow_fit_image_within( image, max_height=expected_size[1], max_width=expected_size[0] ) logger.debug(f"Image is now of size: {image.size}") background = Image.new("RGB", expected_size, "white") # Calculate the position to center the original image x = (background.width - image.width) // 2 y = (background.height - image.height) // 2 background.paste(image, (x, y)) # crop_coords = (x, y, x + image.width, y + image.height) # image = background w, h = image.size snap_to = 64 if h % snap_to != 0 or w % snap_to != 0: width = w - w % snap_to height = h - h % snap_to image = image.resize((width, height)) logger.warning( f"Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!" ) image = ToTensor()(image) image = image * 2.0 - 1.0 image = image.unsqueeze(0).to(device) H, W = image.shape[2:] assert image.shape[1] == 3 F = 8 C = 4 shape = (num_frames, C, H // F, W // F) if expected_size != (W, H): logger.warning( f"The {W, H} image you provided is not {expected_size}. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`." ) if motion_bucket_id > 255: logger.warning( "High motion bucket! This may lead to suboptimal performance." ) if fps_id < 5: logger.warning( "Small fps value! This may lead to suboptimal performance." ) if fps_id > 30: logger.warning( "Large fps value! This may lead to suboptimal performance." ) value_dict: dict[str, Any] = {} value_dict["motion_bucket_id"] = motion_bucket_id value_dict["fps_id"] = fps_id value_dict["cond_aug"] = cond_aug value_dict["cond_frames_without_noise"] = image value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image) with torch.no_grad(), platform_appropriate_autocast(): reload_model(model.conditioner, device=device) if device == "cpu": model.conditioner.to(torch.float32) for k in value_dict: if isinstance(value_dict[k], torch.Tensor): value_dict[k] = value_dict[k].to( next(model.conditioner.parameters()).dtype ) batch, batch_uc = get_batch( get_unique_embedder_keys_from_conditioner(model.conditioner), value_dict, [1, num_frames], T=num_frames, device=device, ) c, uc = model.conditioner.get_unconditional_conditioning( batch, batch_uc=batch_uc, force_uc_zero_embeddings=[ "cond_frames", "cond_frames_without_noise", ], ) unload_model(model.conditioner) for k in ["crossattn", "concat"]: uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) randn = torch.randn(shape, device=device, dtype=torch.float16) additional_model_inputs = {} additional_model_inputs["image_only_indicator"] = torch.zeros( 2, num_frames ).to(device) additional_model_inputs["num_video_frames"] = batch["num_video_frames"] def denoiser(_input, sigma, c): _input = _input.half().to(device) return model.denoiser( model.model, _input, sigma, c, **additional_model_inputs ) reload_model(model.denoiser, device=device) reload_model(model.model, device=device) samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) unload_model(model.model) unload_model(model.denoiser) reload_model(model.first_stage_model, device=device) model.en_and_decode_n_samples_a_time = decoding_t samples_x = model.decode_first_stage(samples_z) samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) unload_model(model.first_stage_model) if crop_coords: left, upper, right, lower = crop_coords samples = samples[:, :, upper:lower, left:right] os.makedirs(output_folder_str, exist_ok=True) base_count = len(glob(os.path.join(output_folder_str, "*.*"))) + 1 source_slug = make_safe_filename(input_path) video_filename = f"{base_count:06d}_{model_name}_{_seed}_{fps_id}fps_{source_slug}.{output_format}" video_path = os.path.join(output_folder_str, video_filename) samples = safety_filter(samples) # save_video(samples, video_path, output_fps) save_video_bounce(samples, video_path, output_fps) duration = time.perf_counter() - start_time logger.info( f"Video of {num_frames} frames generated in {duration:.2f} seconds and saved to {video_path}\n" ) def save_video(samples: torch.Tensor, video_filename: str, output_fps: int): """ Saves a video from given tensor samples. Args: samples (torch.Tensor): Tensor containing video frame data. video_filename (str): The full path and filename where the video will be saved. output_fps (int): Frames per second for the output video. safety_filter (Callable[[torch.Tensor], torch.Tensor]): A function to apply a safety filter to the samples. Returns: str: The path to the saved video. """ vid = (torch.permute(samples, (0, 2, 3, 1)) * 255).cpu().numpy().astype(np.uint8) writer = cv2.VideoWriter( video_filename, cv2.VideoWriter_fourcc(*"MP4V"), # type: ignore output_fps, (samples.shape[-1], samples.shape[-2]), ) for frame in vid: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) writer.write(frame) writer.release() video_path_h264 = video_filename[:-4] + "_h264.mp4" os.system(f"ffmpeg -i {video_filename} -c:v libx264 {video_path_h264}") def save_video_bounce( samples: torch.Tensor, video_filename: str, output_fps: int, interpolate_fps=60 ): frames_np = ( (torch.permute(samples, (0, 2, 3, 1)) * 255).cpu().numpy().astype(np.uint8) ) transition_duration = len(frames_np) / float(output_fps) frames_pil = [Image.fromarray(frame) for frame in frames_np] if interpolate_fps: # bring it up to at least 60 fps fps_multiplier = int(math.ceil(interpolate_fps / output_fps)) frames_pil = interpolate_images(frames_pil, fps_multiplier=fps_multiplier) transition_duration_ms = transition_duration * 1000 logger.info( f"Interpolated from {len(frames_np)} to {len(frames_pil)} frames ({fps_multiplier} multiplier)" ) logger.info( f"Making bounce animation with transition duration {transition_duration_ms:.1f}ms" ) make_bounce_animation( imgs=frames_pil, outpath=video_filename, transition_duration_ms=transition_duration_ms, end_pause_duration_ms=100, max_fps=60, ) def get_unique_embedder_keys_from_conditioner(conditioner): return list({x.input_key for x in conditioner.embedders}) def get_batch(keys, value_dict, N, T, device): batch = {} batch_uc = {} for key in keys: if key == "fps_id": batch[key] = ( torch.tensor([value_dict["fps_id"]]) .to(device) .repeat(int(math.prod(N))) ) elif key == "motion_bucket_id": batch[key] = ( torch.tensor([value_dict["motion_bucket_id"]]) .to(device) .repeat(int(math.prod(N))) ) elif key == "cond_aug": batch[key] = repeat( torch.tensor([value_dict["cond_aug"]]).to(device), "1 -> b", b=math.prod(N), ) elif key == "cond_frames": batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0]) elif key == "cond_frames_without_noise": batch[key] = repeat( value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0] ) else: batch[key] = value_dict[key] if T is not None: batch["num_video_frames"] = T for key in batch: if key not in batch_uc and isinstance(batch[key], torch.Tensor): batch_uc[key] = torch.clone(batch[key]) return batch, batch_uc def load_model( config: str, device: str, num_frames: int, num_steps: int, weights_url: str ): oconfig = OmegaConf.load(config) ckpt_path = get_cached_url_path(weights_url) oconfig["model"]["params"]["ckpt_path"] = ckpt_path # type: ignore if device == "cuda": oconfig.model.params.conditioner_config.params.emb_models[ 0 ].params.open_clip_embedding_config.params.init_device = device oconfig.model.params.sampler_config.params.num_steps = num_steps oconfig.model.params.sampler_config.params.guider_config.params.num_frames = ( num_frames ) model = instantiate_from_config(oconfig.model).to(device).half().eval() # safety_filter = DeepFloydDataFiltering(verbose=False, device=device) def safety_filter(x): return x # use less memory model.model.half() return model, safety_filter lowvram_mode = True def unload_model(model): global lowvram_mode if lowvram_mode: model.cpu() if get_device() == "cuda": torch.cuda.empty_cache() def reload_model(model, device=None): device = default(device, get_device) model.to(device) def pillow_fit_image_within( image: Image.Image, max_height=512, max_width=512, convert="RGB", snap_size=8 ): image = image.convert(convert) w, h = image.size resize_ratio = 1 if w > max_width or h > max_height: resize_ratio = min(max_width / w, max_height / h) elif w < max_width and h < max_height: # it's smaller than our target image, enlarge resize_ratio = min(max_width / w, max_height / h) if resize_ratio != 1: w, h = int(w * resize_ratio), int(h * resize_ratio) # resize to integer multiple of snap_size w -= w % snap_size h -= h % snap_size if (w, h) != image.size: image = image.resize((w, h), resample=Image.Resampling.LANCZOS) return image def make_safe_filename(input_string): stripped_url = re.sub(r"^https?://[^/]+/", "", input_string) # Remove directory path if present base_name = os.path.basename(stripped_url) # Remove file extension name_without_extension = os.path.splitext(base_name)[0] # Keep only alphanumeric characters and dashes safe_name = re.sub(r"[^a-zA-Z0-9\-]", "", name_without_extension) return safe_name