feature: use refiners library for generation
BREAKING CHANGE - stable diffusion 1.5 + inpainting working - self-attention guidance working. improves image generation quality - tile-mode working - inpainting self-attention guidance working disable/broken features: - sd 1.4, 2.0, 2.1 - most of the samplers - pix2pix edit - most of the controlnets - memory management - python 3.8 support wip
6
.github/workflows/ci.yaml
vendored
@ -54,10 +54,11 @@ jobs:
|
||||
run: |
|
||||
black --diff --fast .
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: macos-13-xlarge
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.8", "3.10"]
|
||||
python-version: ["3.10"]
|
||||
subset: ["1/10", "2/10", "3/10", "4/10", "5/10", "6/10", "7/10", "8/10", "9/10", "10/10"]
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
@ -69,7 +70,6 @@ jobs:
|
||||
cache-dependency-path: requirements-dev.txt
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install torch==1.13.1+cpu -f https://download.pytorch.org/whl/torch_stable.html
|
||||
python -m pip install -r requirements-dev.txt .
|
||||
- name: Get current date
|
||||
id: date
|
||||
|
4
Makefile
@ -16,9 +16,9 @@ init: require_pyenv ## Setup a dev environment for local development.
|
||||
@echo -e "\033[0;32m ✔️ 🐍 $(venv_name) virtualenv activated \033[0m"
|
||||
pip install --upgrade pip pip-tools
|
||||
pip-sync requirements-dev.txt
|
||||
pip install -e . --no-deps
|
||||
pip install -e .
|
||||
# the compiled requirements don't included OS specific subdependencies so we trigger those this way
|
||||
pip install `pip freeze | grep "^torch=="`
|
||||
#pip install `pip freeze | grep "^torch=="`
|
||||
@echo -e "\nEnvironment setup! ✨ 🍰 ✨ 🐍 \n\nCopy this path to tell PyCharm where your virtualenv is. You may have to click the refresh button in the pycharm file explorer.\n"
|
||||
@echo -e "\033[0;32m"
|
||||
@pyenv which python
|
||||
|
@ -2,6 +2,8 @@ import os
|
||||
|
||||
# tells pytorch to allow MPS usage (for Mac M1 compatibility)
|
||||
os.putenv("PYTORCH_ENABLE_MPS_FALLBACK", "1")
|
||||
# use more memory than we should
|
||||
os.putenv("PYTORCH_MPS_HIGH_WATERMARK_RATIO", "0.0")
|
||||
|
||||
import sys # noqa
|
||||
|
||||
|
@ -141,6 +141,7 @@ def imagine(
|
||||
):
|
||||
import torch.nn
|
||||
|
||||
from imaginairy.api_refiners import _generate_single_image
|
||||
from imaginairy.schema import ImaginePrompt
|
||||
from imaginairy.utils import (
|
||||
check_torch_version,
|
||||
@ -190,7 +191,7 @@ def imagine(
|
||||
yield result
|
||||
|
||||
|
||||
def _generate_single_image(
|
||||
def _generate_single_image_compvis(
|
||||
prompt,
|
||||
debug_img_callback=None,
|
||||
progress_img_callback=None,
|
||||
@ -674,8 +675,10 @@ def _scale_latent(
|
||||
def _generate_composition_image(prompt, target_height, target_width, cutoff=512):
|
||||
from PIL import Image
|
||||
|
||||
from imaginairy.api_refiners import _generate_single_image
|
||||
|
||||
if prompt.width <= cutoff and prompt.height <= cutoff:
|
||||
return None
|
||||
return None, None
|
||||
|
||||
shrink_scale = calc_scale_to_fit_within(
|
||||
height=prompt.height,
|
||||
@ -713,7 +716,7 @@ def _generate_composition_image(prompt, target_height, target_width, cutoff=512)
|
||||
resample=Image.Resampling.LANCZOS,
|
||||
)
|
||||
|
||||
return img
|
||||
return img, result.images["generated"]
|
||||
|
||||
|
||||
def prompt_normalized(prompt, length=130):
|
||||
|
433
imaginairy/api_refiners.py
Normal file
@ -0,0 +1,433 @@
|
||||
import logging
|
||||
from typing import List, Optional
|
||||
|
||||
from imaginairy import WeightedPrompt
|
||||
from imaginairy.config import CONTROLNET_CONFIG_SHORTCUTS
|
||||
from imaginairy.model_manager import load_controlnet_adapter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _generate_single_image(
|
||||
prompt,
|
||||
debug_img_callback=None,
|
||||
progress_img_callback=None,
|
||||
progress_img_interval_steps=3,
|
||||
progress_img_interval_min_s=0.1,
|
||||
half_mode=None,
|
||||
add_caption=False,
|
||||
# controlnet, finetune, naive, auto
|
||||
inpaint_method="finetune",
|
||||
return_latent=False,
|
||||
):
|
||||
import gc
|
||||
|
||||
import torch.nn
|
||||
from PIL import ImageOps
|
||||
from pytorch_lightning import seed_everything
|
||||
from refiners.foundationals.latent_diffusion.schedulers import DDIM, DPMSolver
|
||||
from tqdm import tqdm
|
||||
|
||||
from imaginairy.api import (
|
||||
IMAGINAIRY_SAFETY_MODE,
|
||||
_generate_composition_image,
|
||||
combine_image,
|
||||
)
|
||||
from imaginairy.enhancers.clip_masking import get_img_mask
|
||||
from imaginairy.enhancers.describe_image_blip import generate_caption
|
||||
from imaginairy.enhancers.face_restoration_codeformer import enhance_faces
|
||||
from imaginairy.enhancers.upscale_realesrgan import upscale_image
|
||||
from imaginairy.img_utils import (
|
||||
add_caption_to_image,
|
||||
pillow_fit_image_within,
|
||||
pillow_img_to_torch_image,
|
||||
pillow_mask_to_latent_mask,
|
||||
)
|
||||
from imaginairy.log_utils import (
|
||||
ImageLoggingContext,
|
||||
log_img,
|
||||
log_latent,
|
||||
)
|
||||
from imaginairy.model_manager import (
|
||||
get_diffusion_model_refiners,
|
||||
get_model_default_image_size,
|
||||
)
|
||||
from imaginairy.outpaint import outpaint_arg_str_parse, prepare_image_for_outpaint
|
||||
from imaginairy.safety import create_safety_score
|
||||
from imaginairy.samplers import SamplerName
|
||||
from imaginairy.schema import ImaginePrompt, ImagineResult
|
||||
from imaginairy.utils import get_device, randn_seeded
|
||||
|
||||
get_device()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
prompt = prompt.make_concrete_copy()
|
||||
|
||||
control_modes = []
|
||||
control_inputs = prompt.control_inputs or []
|
||||
control_inputs = control_inputs.copy()
|
||||
for_inpainting = bool(prompt.mask_image or prompt.mask_prompt or prompt.outpaint)
|
||||
|
||||
if control_inputs:
|
||||
control_modes = [c.mode for c in prompt.control_inputs]
|
||||
|
||||
sd = get_diffusion_model_refiners(
|
||||
weights_location=prompt.model,
|
||||
config_path=prompt.model_config_path,
|
||||
control_weights_locations=tuple(control_modes),
|
||||
half_mode=half_mode,
|
||||
for_inpainting=for_inpainting and inpaint_method == "finetune",
|
||||
)
|
||||
|
||||
seed_everything(prompt.seed)
|
||||
downsampling_factor = 8
|
||||
latent_channels = 4
|
||||
batch_size = 1
|
||||
|
||||
mask_image = None
|
||||
mask_image_orig = None
|
||||
prompt = prompt.make_concrete_copy()
|
||||
|
||||
def latent_logger(latents):
|
||||
progress_latents.append(latents)
|
||||
|
||||
with ImageLoggingContext(
|
||||
prompt=prompt,
|
||||
model=sd,
|
||||
debug_img_callback=debug_img_callback,
|
||||
progress_img_callback=progress_img_callback,
|
||||
progress_img_interval_steps=progress_img_interval_steps,
|
||||
progress_img_interval_min_s=progress_img_interval_min_s,
|
||||
progress_latent_callback=latent_logger
|
||||
if prompt.collect_progress_latents
|
||||
else None,
|
||||
) as lc:
|
||||
sd.set_tile_mode(prompt.tile_mode)
|
||||
|
||||
clip_text_embedding = _calc_conditioning(
|
||||
positive_prompts=prompt.prompts,
|
||||
negative_prompts=prompt.negative_prompt,
|
||||
positive_conditioning=prompt.conditioning,
|
||||
text_encoder=sd.clip_text_encoder,
|
||||
)
|
||||
|
||||
result_images = {}
|
||||
progress_latents = []
|
||||
first_step = 0
|
||||
mask_grayscale = None
|
||||
|
||||
shape = [
|
||||
batch_size,
|
||||
latent_channels,
|
||||
prompt.height // downsampling_factor,
|
||||
prompt.width // downsampling_factor,
|
||||
]
|
||||
|
||||
init_latent = None
|
||||
if prompt.init_image:
|
||||
starting_image = prompt.init_image
|
||||
first_step = int((prompt.steps - 1) * prompt.init_image_strength)
|
||||
|
||||
if prompt.mask_prompt:
|
||||
mask_image, mask_grayscale = get_img_mask(
|
||||
starting_image, prompt.mask_prompt, threshold=0.1
|
||||
)
|
||||
elif prompt.mask_image:
|
||||
mask_image = prompt.mask_image.convert("L")
|
||||
|
||||
if prompt.outpaint:
|
||||
outpaint_kwargs = outpaint_arg_str_parse(prompt.outpaint)
|
||||
starting_image, mask_image = prepare_image_for_outpaint(
|
||||
starting_image, mask_image, **outpaint_kwargs
|
||||
)
|
||||
|
||||
init_image = pillow_fit_image_within(
|
||||
starting_image,
|
||||
max_height=prompt.height,
|
||||
max_width=prompt.width,
|
||||
)
|
||||
init_image_t = pillow_img_to_torch_image(init_image)
|
||||
init_image_t = init_image_t.to(device=sd.device, dtype=sd.dtype)
|
||||
init_latent = sd.lda.encode(init_image_t)
|
||||
shape = init_latent.shape
|
||||
|
||||
log_latent(init_latent, "init_latent")
|
||||
|
||||
if mask_image is not None:
|
||||
mask_image = pillow_fit_image_within(
|
||||
mask_image,
|
||||
max_height=prompt.height,
|
||||
max_width=prompt.width,
|
||||
convert="L",
|
||||
)
|
||||
|
||||
log_img(mask_image, "init mask")
|
||||
|
||||
if prompt.mask_mode == ImaginePrompt.MaskMode.REPLACE:
|
||||
mask_image = ImageOps.invert(mask_image)
|
||||
|
||||
mask_image_orig = mask_image
|
||||
log_img(mask_image, "latent_mask")
|
||||
pillow_mask_to_latent_mask(
|
||||
mask_image, downsampling_factor=downsampling_factor
|
||||
).to(get_device())
|
||||
# if inpaint_method == "controlnet":
|
||||
# result_images["control-inpaint"] = mask_image
|
||||
# control_inputs.append(
|
||||
# ControlNetInput(mode="inpaint", image=mask_image)
|
||||
# )
|
||||
|
||||
seed_everything(prompt.seed)
|
||||
|
||||
noise = randn_seeded(seed=prompt.seed, size=shape).to(
|
||||
get_device(), dtype=sd.dtype
|
||||
)
|
||||
noised_latent = noise
|
||||
controlnets = []
|
||||
|
||||
if control_modes:
|
||||
control_strengths = []
|
||||
from imaginairy.img_processors.control_modes import CONTROL_MODES
|
||||
|
||||
for control_input in control_inputs:
|
||||
if control_input.image_raw is not None:
|
||||
control_image = control_input.image_raw
|
||||
elif control_input.image is not None:
|
||||
control_image = control_input.image
|
||||
control_image = control_image.convert("RGB")
|
||||
log_img(control_image, "control_image_input")
|
||||
control_image_input = pillow_fit_image_within(
|
||||
control_image,
|
||||
max_height=prompt.height,
|
||||
max_width=prompt.width,
|
||||
)
|
||||
control_image_input_t = pillow_img_to_torch_image(control_image_input)
|
||||
control_image_input_t = control_image_input_t.to(get_device())
|
||||
|
||||
if control_input.image_raw is None:
|
||||
control_prep_function = CONTROL_MODES[control_input.mode]
|
||||
if control_input.mode == "inpaint":
|
||||
control_image_t = control_prep_function(
|
||||
control_image_input_t, init_image_t
|
||||
)
|
||||
else:
|
||||
control_image_t = control_prep_function(control_image_input_t)
|
||||
else:
|
||||
control_image_t = (control_image_input_t + 1) / 2
|
||||
|
||||
control_image_disp = control_image_t * 2 - 1
|
||||
result_images[f"control-{control_input.mode}"] = control_image_disp
|
||||
log_img(control_image_disp, "control_image")
|
||||
|
||||
if len(control_image_t.shape) == 3:
|
||||
raise RuntimeError("Control image must be 4D")
|
||||
|
||||
if control_image_t.shape[1] != 3:
|
||||
raise RuntimeError("Control image must have 3 channels")
|
||||
|
||||
if (
|
||||
control_input.mode != "inpaint"
|
||||
and control_image_t.min() < 0
|
||||
or control_image_t.max() > 1
|
||||
):
|
||||
msg = f"Control image must be in [0, 1] but we received {control_image_t.min()} and {control_image_t.max()}"
|
||||
raise RuntimeError(msg)
|
||||
|
||||
if control_image_t.max() == control_image_t.min():
|
||||
msg = f"No control signal found in control image {control_input.mode}."
|
||||
raise RuntimeError(msg)
|
||||
|
||||
control_strengths.append(control_input.strength)
|
||||
|
||||
control_weights_path = CONTROLNET_CONFIG_SHORTCUTS.get(
|
||||
control_input.mode, None
|
||||
).weights_url
|
||||
|
||||
controlnet = load_controlnet_adapter(
|
||||
name=control_input.mode,
|
||||
control_weights_location=control_weights_path,
|
||||
target_unet=sd.unet,
|
||||
scale=control_input.strength,
|
||||
)
|
||||
controlnets.append((controlnet, control_image_t))
|
||||
|
||||
noise_step = None
|
||||
if prompt.allow_compose_phase:
|
||||
if prompt.init_image:
|
||||
comp_image, comp_img_orig = _generate_composition_image(
|
||||
prompt=prompt,
|
||||
target_height=init_image.height,
|
||||
target_width=init_image.width,
|
||||
cutoff=get_model_default_image_size(prompt.model),
|
||||
)
|
||||
else:
|
||||
comp_image, comp_img_orig = _generate_composition_image(
|
||||
prompt=prompt,
|
||||
target_height=prompt.height,
|
||||
target_width=prompt.width,
|
||||
cutoff=get_model_default_image_size(prompt.model),
|
||||
)
|
||||
if comp_image is not None:
|
||||
result_images["composition"] = comp_img_orig
|
||||
result_images["composition-upscaled"] = comp_image
|
||||
# noise = noise[:, :, : comp_image.height, : comp_image.shape[3]]
|
||||
comp_cutoff = 0.60
|
||||
first_step = int((prompt.steps - 1) * comp_cutoff)
|
||||
# noise_step = int(prompt.steps * max(comp_cutoff - 0.05, 0))
|
||||
# noise_step = max(noise_step, 0)
|
||||
# noise_step = min(noise_step, prompt.steps - 1)
|
||||
log_img(comp_image, "comp_image")
|
||||
comp_image_t = pillow_img_to_torch_image(comp_image)
|
||||
comp_image_t = comp_image_t.to(sd.device, dtype=sd.dtype)
|
||||
init_latent = sd.lda.encode(comp_image_t)
|
||||
for controlnet, control_image_t in controlnets:
|
||||
controlnet.set_controlnet_condition(
|
||||
control_image_t.to(device=sd.device, dtype=sd.dtype)
|
||||
)
|
||||
controlnet.inject()
|
||||
if prompt.sampler_type.lower() == SamplerName.K_DPMPP_2M:
|
||||
sd.scheduler = DPMSolver(num_inference_steps=prompt.steps)
|
||||
elif prompt.sampler_type.lower() == SamplerName.DDIM:
|
||||
sd.scheduler = DDIM(num_inference_steps=prompt.steps)
|
||||
else:
|
||||
msg = f"Unknown sampler type: {prompt.sampler_type}"
|
||||
raise ValueError(msg)
|
||||
sd.scheduler.to(device=sd.device, dtype=sd.dtype)
|
||||
sd.set_num_inference_steps(prompt.steps)
|
||||
if hasattr(sd, "mask_latents"):
|
||||
sd.set_inpainting_conditions(
|
||||
target_image=init_image,
|
||||
mask=ImageOps.invert(mask_image),
|
||||
latents_size=shape[-2:],
|
||||
)
|
||||
|
||||
if init_latent is not None:
|
||||
print(
|
||||
f"noise step: {noise_step} first step: {first_step} len steps: {len(sd.steps)}"
|
||||
)
|
||||
noise_step = noise_step if noise_step is not None else first_step
|
||||
noised_latent = sd.scheduler.add_noise(
|
||||
x=init_latent, noise=noise, step=sd.steps[noise_step]
|
||||
)
|
||||
|
||||
x = noised_latent
|
||||
x = x.to(device=sd.device, dtype=sd.dtype)
|
||||
|
||||
for step in tqdm(sd.steps[first_step:]):
|
||||
log_latent(x, "noisy_latent")
|
||||
x = sd(
|
||||
x,
|
||||
step=step,
|
||||
clip_text_embedding=clip_text_embedding,
|
||||
condition_scale=prompt.prompt_strength,
|
||||
)
|
||||
|
||||
logger.debug("Decoding image")
|
||||
gen_img = sd.lda.decode_latents(x)
|
||||
|
||||
if mask_image_orig and init_image:
|
||||
result_images["pre-reconstitution"] = gen_img
|
||||
mask_final = mask_image_orig.copy()
|
||||
# mask_final = ImageOps.invert(mask_final)
|
||||
|
||||
log_img(mask_final, "reconstituting mask")
|
||||
# gen_img = Image.composite(gen_img, init_image, mask_final)
|
||||
gen_img = combine_image(
|
||||
original_img=init_image,
|
||||
generated_img=gen_img,
|
||||
mask_img=mask_final,
|
||||
)
|
||||
log_img(gen_img, "reconstituted image")
|
||||
|
||||
upscaled_img = None
|
||||
rebuilt_orig_img = None
|
||||
|
||||
if add_caption:
|
||||
caption = generate_caption(gen_img)
|
||||
logger.info(f"Generated caption: {caption}")
|
||||
|
||||
with lc.timing("safety-filter"):
|
||||
safety_score = create_safety_score(
|
||||
gen_img,
|
||||
safety_mode=IMAGINAIRY_SAFETY_MODE,
|
||||
)
|
||||
if safety_score.is_filtered:
|
||||
progress_latents.clear()
|
||||
if not safety_score.is_filtered:
|
||||
if prompt.fix_faces:
|
||||
logger.info("Fixing 😊 's in 🖼 using CodeFormer...")
|
||||
with lc.timing("face enhancement"):
|
||||
gen_img = enhance_faces(gen_img, fidelity=prompt.fix_faces_fidelity)
|
||||
if prompt.upscale:
|
||||
logger.info("Upscaling 🖼 using real-ESRGAN...")
|
||||
with lc.timing("upscaling"):
|
||||
upscaled_img = upscale_image(gen_img)
|
||||
|
||||
# put the newly generated patch back into the original, full-size image
|
||||
if prompt.mask_modify_original and mask_image_orig and starting_image:
|
||||
logger.info("Combining inpainting with original image...")
|
||||
img_to_add_back_to_original = upscaled_img if upscaled_img else gen_img
|
||||
rebuilt_orig_img = combine_image(
|
||||
original_img=starting_image,
|
||||
generated_img=img_to_add_back_to_original,
|
||||
mask_img=mask_image_orig,
|
||||
)
|
||||
|
||||
if prompt.caption_text:
|
||||
caption_text = prompt.caption_text.format(prompt=prompt.prompt_text)
|
||||
add_caption_to_image(gen_img, caption_text)
|
||||
|
||||
result = ImagineResult(
|
||||
img=gen_img,
|
||||
prompt=prompt,
|
||||
upscaled_img=upscaled_img,
|
||||
is_nsfw=safety_score.is_nsfw,
|
||||
safety_score=safety_score,
|
||||
modified_original=rebuilt_orig_img,
|
||||
mask_binary=mask_image_orig,
|
||||
mask_grayscale=mask_grayscale,
|
||||
result_images=result_images,
|
||||
timings={},
|
||||
progress_latents=[],
|
||||
)
|
||||
|
||||
_most_recent_result = result
|
||||
logger.info(f"Image Generated. Timings: {result.timings_str()}")
|
||||
for controlnet, _ in controlnets:
|
||||
controlnet.eject()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
return result
|
||||
|
||||
|
||||
def _prompts_to_embeddings(prompts, text_encoder):
|
||||
total_weight = sum(wp.weight for wp in prompts)
|
||||
conditioning = sum(
|
||||
text_encoder(wp.text) * (wp.weight / total_weight) for wp in prompts
|
||||
)
|
||||
|
||||
return conditioning
|
||||
|
||||
|
||||
def _calc_conditioning(
|
||||
positive_prompts: Optional[List[WeightedPrompt]],
|
||||
negative_prompts: Optional[List[WeightedPrompt]],
|
||||
positive_conditioning,
|
||||
text_encoder,
|
||||
):
|
||||
import torch
|
||||
|
||||
from imaginairy.log_utils import log_conditioning
|
||||
|
||||
# need to expand if doing batches
|
||||
neutral_conditioning = _prompts_to_embeddings(negative_prompts, text_encoder)
|
||||
log_conditioning(neutral_conditioning, "neutral conditioning")
|
||||
|
||||
if positive_conditioning is None:
|
||||
positive_conditioning = _prompts_to_embeddings(positive_prompts, text_encoder)
|
||||
log_conditioning(positive_conditioning, "positive conditioning")
|
||||
|
||||
clip_text_embedding = torch.cat(
|
||||
tensors=(neutral_conditioning, positive_conditioning), dim=0
|
||||
)
|
||||
return clip_text_embedding
|
@ -31,14 +31,14 @@ class ModelConfig:
|
||||
midas_url = "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt"
|
||||
|
||||
MODEL_CONFIGS = [
|
||||
ModelConfig(
|
||||
description="Stable Diffusion 1.4",
|
||||
short_name="SD-1.4",
|
||||
config_path="configs/stable-diffusion-v1.yaml",
|
||||
weights_url="https://huggingface.co/bstddev/sd-v1-4/resolve/77221977fa8de8ab8f36fac0374c120bd5b53287/sd-v1-4.ckpt",
|
||||
default_image_size=512,
|
||||
alias="sd14",
|
||||
),
|
||||
# ModelConfig(
|
||||
# description="Stable Diffusion 1.4",
|
||||
# short_name="SD-1.4",
|
||||
# config_path="configs/stable-diffusion-v1.yaml",
|
||||
# weights_url="https://huggingface.co/bstddev/sd-v1-4/resolve/77221977fa8de8ab8f36fac0374c120bd5b53287/sd-v1-4.ckpt",
|
||||
# default_image_size=512,
|
||||
# alias="sd14",
|
||||
# ),
|
||||
ModelConfig(
|
||||
description="Stable Diffusion 1.5",
|
||||
short_name="SD-1.5",
|
||||
@ -56,72 +56,72 @@ MODEL_CONFIGS = [
|
||||
default_image_size=512,
|
||||
alias="sd15in",
|
||||
),
|
||||
ModelConfig(
|
||||
description="Stable Diffusion 2.0 - bad at making people",
|
||||
short_name="SD-2.0",
|
||||
config_path="configs/stable-diffusion-v2-inference.yaml",
|
||||
weights_url="https://huggingface.co/stabilityai/stable-diffusion-2-base/resolve/main/512-base-ema.ckpt",
|
||||
default_image_size=512,
|
||||
alias="sd20",
|
||||
),
|
||||
ModelConfig(
|
||||
description="Stable Diffusion 2.0 - Inpainting",
|
||||
short_name="SD-2.0-inpaint",
|
||||
config_path="configs/stable-diffusion-v2-inpainting-inference.yaml",
|
||||
weights_url="https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/resolve/main/512-inpainting-ema.ckpt",
|
||||
default_image_size=512,
|
||||
alias="sd20in",
|
||||
),
|
||||
ModelConfig(
|
||||
description="Stable Diffusion 2.0 v - 768x768 - bad at making people",
|
||||
short_name="SD-2.0-v",
|
||||
config_path="configs/stable-diffusion-v2-inference-v.yaml",
|
||||
weights_url="https://huggingface.co/stabilityai/stable-diffusion-2/resolve/main/768-v-ema.ckpt",
|
||||
default_image_size=768,
|
||||
alias="sd20v",
|
||||
),
|
||||
ModelConfig(
|
||||
description="Stable Diffusion 2.0 - Depth",
|
||||
short_name="SD-2.0-depth",
|
||||
config_path="configs/stable-diffusion-v2-midas-inference.yaml",
|
||||
weights_url="https://huggingface.co/stabilityai/stable-diffusion-2-depth/resolve/main/512-depth-ema.ckpt",
|
||||
default_image_size=512,
|
||||
alias="sd20dep",
|
||||
),
|
||||
ModelConfig(
|
||||
description="Stable Diffusion 2.1",
|
||||
short_name="SD-2.1",
|
||||
config_path="configs/stable-diffusion-v2-inference.yaml",
|
||||
weights_url="https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt",
|
||||
default_image_size=512,
|
||||
alias="sd21",
|
||||
),
|
||||
ModelConfig(
|
||||
description="Stable Diffusion 2.1 - Inpainting",
|
||||
short_name="SD-2.1-inpaint",
|
||||
config_path="configs/stable-diffusion-v2-inpainting-inference.yaml",
|
||||
weights_url="https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/resolve/main/512-inpainting-ema.ckpt",
|
||||
default_image_size=512,
|
||||
alias="sd21in",
|
||||
),
|
||||
ModelConfig(
|
||||
description="Stable Diffusion 2.1 v - 768x768",
|
||||
short_name="SD-2.1-v",
|
||||
config_path="configs/stable-diffusion-v2-inference-v.yaml",
|
||||
weights_url="https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.ckpt",
|
||||
default_image_size=768,
|
||||
forced_attn_precision="fp32",
|
||||
alias="sd21v",
|
||||
),
|
||||
ModelConfig(
|
||||
description="Instruct Pix2Pix - Photo Editing",
|
||||
short_name="instruct-pix2pix",
|
||||
config_path="configs/instruct-pix2pix.yaml",
|
||||
weights_url="https://huggingface.co/imaginairy/instruct-pix2pix/resolve/ea0009b3d0d4888f410a40bd06d69516d0b5a577/instruct-pix2pix-00-22000-pruned.ckpt",
|
||||
default_image_size=512,
|
||||
default_negative_prompt="",
|
||||
alias="edit",
|
||||
),
|
||||
# ModelConfig(
|
||||
# description="Stable Diffusion 2.0 - bad at making people",
|
||||
# short_name="SD-2.0",
|
||||
# config_path="configs/stable-diffusion-v2-inference.yaml",
|
||||
# weights_url="https://huggingface.co/stabilityai/stable-diffusion-2-base/resolve/main/512-base-ema.ckpt",
|
||||
# default_image_size=512,
|
||||
# alias="sd20",
|
||||
# ),
|
||||
# ModelConfig(
|
||||
# description="Stable Diffusion 2.0 - Inpainting",
|
||||
# short_name="SD-2.0-inpaint",
|
||||
# config_path="configs/stable-diffusion-v2-inpainting-inference.yaml",
|
||||
# weights_url="https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/resolve/main/512-inpainting-ema.ckpt",
|
||||
# default_image_size=512,
|
||||
# alias="sd20in",
|
||||
# ),
|
||||
# ModelConfig(
|
||||
# description="Stable Diffusion 2.0 v - 768x768 - bad at making people",
|
||||
# short_name="SD-2.0-v",
|
||||
# config_path="configs/stable-diffusion-v2-inference-v.yaml",
|
||||
# weights_url="https://huggingface.co/stabilityai/stable-diffusion-2/resolve/main/768-v-ema.ckpt",
|
||||
# default_image_size=768,
|
||||
# alias="sd20v",
|
||||
# ),
|
||||
# ModelConfig(
|
||||
# description="Stable Diffusion 2.0 - Depth",
|
||||
# short_name="SD-2.0-depth",
|
||||
# config_path="configs/stable-diffusion-v2-midas-inference.yaml",
|
||||
# weights_url="https://huggingface.co/stabilityai/stable-diffusion-2-depth/resolve/main/512-depth-ema.ckpt",
|
||||
# default_image_size=512,
|
||||
# alias="sd20dep",
|
||||
# ),
|
||||
# ModelConfig(
|
||||
# description="Stable Diffusion 2.1",
|
||||
# short_name="SD-2.1",
|
||||
# config_path="configs/stable-diffusion-v2-inference.yaml",
|
||||
# weights_url="https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt",
|
||||
# default_image_size=512,
|
||||
# alias="sd21",
|
||||
# ),
|
||||
# ModelConfig(
|
||||
# description="Stable Diffusion 2.1 - Inpainting",
|
||||
# short_name="SD-2.1-inpaint",
|
||||
# config_path="configs/stable-diffusion-v2-inpainting-inference.yaml",
|
||||
# weights_url="https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/resolve/main/512-inpainting-ema.ckpt",
|
||||
# default_image_size=512,
|
||||
# alias="sd21in",
|
||||
# ),
|
||||
# ModelConfig(
|
||||
# description="Stable Diffusion 2.1 v - 768x768",
|
||||
# short_name="SD-2.1-v",
|
||||
# config_path="configs/stable-diffusion-v2-inference-v.yaml",
|
||||
# weights_url="https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.ckpt",
|
||||
# default_image_size=768,
|
||||
# forced_attn_precision="fp32",
|
||||
# alias="sd21v",
|
||||
# ),
|
||||
# ModelConfig(
|
||||
# description="Instruct Pix2Pix - Photo Editing",
|
||||
# short_name="instruct-pix2pix",
|
||||
# config_path="configs/instruct-pix2pix.yaml",
|
||||
# weights_url="https://huggingface.co/imaginairy/instruct-pix2pix/resolve/ea0009b3d0d4888f410a40bd06d69516d0b5a577/instruct-pix2pix-00-22000-pruned.ckpt",
|
||||
# default_image_size=512,
|
||||
# default_negative_prompt="",
|
||||
# alias="edit",
|
||||
# ),
|
||||
ModelConfig(
|
||||
description="OpenJourney V1",
|
||||
short_name="openjourney-v1",
|
||||
@ -176,14 +176,14 @@ CONTROLNET_CONFIGS = [
|
||||
short_name="canny15",
|
||||
control_type="canny",
|
||||
config_path="configs/control-net-v15.yaml",
|
||||
weights_url="https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/69fc48b9cbd98661f6d0288dc59b59a5ccb32a6b/control_v11p_sd15_canny.pth",
|
||||
weights_url="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/115a470d547982438f70198e353a921996e2e819/diffusion_pytorch_model.fp16.safetensors",
|
||||
alias="canny",
|
||||
),
|
||||
ControlNetConfig(
|
||||
short_name="depth15",
|
||||
control_type="depth",
|
||||
config_path="configs/control-net-v15.yaml",
|
||||
weights_url="https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/69fc48b9cbd98661f6d0288dc59b59a5ccb32a6b/control_v11f1p_sd15_depth.pth",
|
||||
weights_url="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/539f99181d33db39cf1af2e517cd8056785f0a87/diffusion_pytorch_model.fp16.safetensors",
|
||||
alias="depth",
|
||||
),
|
||||
ControlNetConfig(
|
||||
@ -233,7 +233,7 @@ CONTROLNET_CONFIGS = [
|
||||
short_name="details15",
|
||||
control_type="details",
|
||||
config_path="configs/control-net-v15.yaml",
|
||||
weights_url="https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/69fc48b9cbd98661f6d0288dc59b59a5ccb32a6b/control_v11f1e_sd15_tile.pth",
|
||||
weights_url="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/3f877705c37010b7221c3d10743307d6b5b6efac/diffusion_pytorch_model.bin",
|
||||
alias="details",
|
||||
),
|
||||
ControlNetConfig(
|
||||
@ -254,16 +254,17 @@ for m in CONTROLNET_CONFIGS:
|
||||
CONTROLNET_CONFIG_SHORTCUTS[m.short_name] = m
|
||||
|
||||
SAMPLER_TYPE_OPTIONS = [
|
||||
"plms",
|
||||
# "plms",
|
||||
"ddim",
|
||||
"k_dpm_fast",
|
||||
"k_dpm_adaptive",
|
||||
"k_lms",
|
||||
"k_dpm_2",
|
||||
"k_dpm_2_a",
|
||||
"k_dpmpp_2m",
|
||||
"k_dpmpp_2s_a",
|
||||
"k_euler",
|
||||
"k_euler_a",
|
||||
"k_heun",
|
||||
"k_dpmpp_2m"
|
||||
# "k_dpm_fast",
|
||||
# "k_dpm_adaptive",
|
||||
# "k_lms",
|
||||
# "k_dpm_2",
|
||||
# "k_dpm_2_a",
|
||||
# "k_dpmpp_2m",
|
||||
# "k_dpmpp_2s_a",
|
||||
# "k_euler",
|
||||
# "k_euler_a",
|
||||
# "k_heun",
|
||||
]
|
||||
|
@ -121,7 +121,7 @@ def model_latent_to_pillow_img(latent: torch.Tensor) -> PIL.Image.Image:
|
||||
if latent.shape[0] != 1:
|
||||
raise ValueError("Only batch size 1 supported")
|
||||
model = get_current_diffusion_model()
|
||||
img_t = model.decode_first_stage(latent)
|
||||
img_t = model.lda.decode(latent)
|
||||
return torch_img_to_pillow_img(img_t)
|
||||
|
||||
|
||||
|
@ -3,7 +3,7 @@ import os
|
||||
import re
|
||||
import sys
|
||||
import urllib.parse
|
||||
from functools import wraps
|
||||
from functools import lru_cache, wraps
|
||||
|
||||
import requests
|
||||
import torch
|
||||
@ -13,6 +13,7 @@ from huggingface_hub import (
|
||||
try_to_load_from_cache,
|
||||
)
|
||||
from omegaconf import OmegaConf
|
||||
from refiners.foundationals.latent_diffusion import SD1ControlnetAdapter, SD1UNet
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from imaginairy import config as iconfig
|
||||
@ -21,6 +22,7 @@ from imaginairy.modules import attention
|
||||
from imaginairy.paths import PKG_ROOT
|
||||
from imaginairy.utils import get_device, instantiate_from_config
|
||||
from imaginairy.utils.model_cache import memory_managed_model
|
||||
from imaginairy.weight_management.conversion import cast_weights
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -232,6 +234,150 @@ def _get_diffusion_model(
|
||||
return diffusion_model
|
||||
|
||||
|
||||
def get_diffusion_model_refiners(
|
||||
weights_location=iconfig.DEFAULT_MODEL,
|
||||
config_path="configs/stable-diffusion-v1.yaml",
|
||||
control_weights_locations=None,
|
||||
half_mode=None,
|
||||
for_inpainting=False,
|
||||
for_training=False,
|
||||
):
|
||||
"""
|
||||
Load a diffusion model.
|
||||
|
||||
Weights location may also be shortcut name, e.g. "SD-1.5"
|
||||
"""
|
||||
try:
|
||||
return _get_diffusion_model_refiners(
|
||||
weights_location,
|
||||
config_path,
|
||||
half_mode,
|
||||
for_inpainting,
|
||||
control_weights_locations=control_weights_locations,
|
||||
for_training=for_training,
|
||||
)
|
||||
except HuggingFaceAuthorizationError as e:
|
||||
if for_inpainting:
|
||||
logger.warning(
|
||||
f"Failed to load inpainting model. Attempting to fall-back to standard model. {e!s}"
|
||||
)
|
||||
return _get_diffusion_model_refiners(
|
||||
iconfig.DEFAULT_MODEL,
|
||||
config_path,
|
||||
half_mode,
|
||||
for_inpainting=False,
|
||||
for_training=for_training,
|
||||
control_weights_locations=control_weights_locations,
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
def _get_diffusion_model_refiners(
|
||||
weights_location=iconfig.DEFAULT_MODEL,
|
||||
config_path="configs/stable-diffusion-v1.yaml",
|
||||
half_mode=None,
|
||||
for_inpainting=False,
|
||||
for_training=False,
|
||||
control_weights_locations=None,
|
||||
device=None,
|
||||
dtype=torch.float16,
|
||||
):
|
||||
"""
|
||||
Load a diffusion model.
|
||||
|
||||
Weights location may also be shortcut name, e.g. "SD-1.5"
|
||||
"""
|
||||
|
||||
sd = _get_diffusion_model_refiners_only(
|
||||
weights_location=weights_location,
|
||||
config_path=config_path,
|
||||
for_inpainting=for_inpainting,
|
||||
for_training=for_training,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
return sd
|
||||
|
||||
|
||||
@lru_cache(maxsize=1)
|
||||
def _get_diffusion_model_refiners_only(
|
||||
weights_location=iconfig.DEFAULT_MODEL,
|
||||
config_path="configs/stable-diffusion-v1.yaml",
|
||||
for_inpainting=False,
|
||||
for_training=False,
|
||||
control_weights_locations=None,
|
||||
device=None,
|
||||
dtype=torch.float16,
|
||||
):
|
||||
"""
|
||||
Load a diffusion model.
|
||||
|
||||
Weights location may also be shortcut name, e.g. "SD-1.5"
|
||||
"""
|
||||
from imaginairy.modules.refiners_sd import (
|
||||
SD1AutoencoderSliced,
|
||||
StableDiffusion_1,
|
||||
StableDiffusion_1_Inpainting,
|
||||
)
|
||||
|
||||
global MOST_RECENTLY_LOADED_MODEL
|
||||
|
||||
device = device or get_device()
|
||||
|
||||
(
|
||||
model_config,
|
||||
weights_location,
|
||||
config_path,
|
||||
control_weights_locations,
|
||||
) = resolve_model_paths(
|
||||
weights_path=weights_location,
|
||||
config_path=config_path,
|
||||
control_weights_paths=control_weights_locations,
|
||||
for_inpainting=for_inpainting,
|
||||
for_training=for_training,
|
||||
)
|
||||
# some models need the attention calculated in float32
|
||||
if model_config is not None:
|
||||
attention.ATTENTION_PRECISION_OVERRIDE = model_config.forced_attn_precision
|
||||
else:
|
||||
attention.ATTENTION_PRECISION_OVERRIDE = "default"
|
||||
|
||||
(
|
||||
vae_weights,
|
||||
unet_weights,
|
||||
text_encoder_weights,
|
||||
) = load_stable_diffusion_compvis_weights(weights_location)
|
||||
|
||||
if for_inpainting:
|
||||
unet = SD1UNet(in_channels=9)
|
||||
StableDiffusionCls = StableDiffusion_1_Inpainting
|
||||
else:
|
||||
unet = SD1UNet(in_channels=4)
|
||||
StableDiffusionCls = StableDiffusion_1
|
||||
logger.debug(f"Using class {StableDiffusionCls.__name__}")
|
||||
|
||||
sd = StableDiffusionCls(
|
||||
device=device, dtype=dtype, lda=SD1AutoencoderSliced(), unet=unet
|
||||
)
|
||||
logger.debug("Loading VAE")
|
||||
sd.lda.load_state_dict(vae_weights)
|
||||
|
||||
logger.debug("Loading text encoder")
|
||||
sd.clip_text_encoder.load_state_dict(text_encoder_weights)
|
||||
|
||||
logger.debug("Loading UNet")
|
||||
sd.unet.load_state_dict(unet_weights, strict=False)
|
||||
|
||||
logger.debug(f"'{weights_location}' Loaded")
|
||||
|
||||
MOST_RECENTLY_LOADED_MODEL = sd
|
||||
|
||||
sd.set_self_attention_guidance(enable=True)
|
||||
|
||||
return sd
|
||||
|
||||
|
||||
@memory_managed_model("stable-diffusion", memory_usage_mb=1951)
|
||||
def _load_diffusion_model(config_path, weights_location, half_mode, for_training):
|
||||
model_config = OmegaConf.load(f"{PKG_ROOT}/{config_path}")
|
||||
@ -250,6 +396,35 @@ def _load_diffusion_model(config_path, weights_location, half_mode, for_training
|
||||
return model
|
||||
|
||||
|
||||
def load_controlnet_adapter(
|
||||
name,
|
||||
control_weights_location,
|
||||
target_unet,
|
||||
scale=1.0,
|
||||
half_mode=False,
|
||||
):
|
||||
controlnet_state_dict = load_state_dict(
|
||||
control_weights_location, half_mode=half_mode
|
||||
)
|
||||
controlnet_state_dict = cast_weights(
|
||||
source_weights=controlnet_state_dict,
|
||||
source_model_name="controlnet-1-1",
|
||||
source_component_name="all",
|
||||
source_format="diffusers",
|
||||
dest_format="refiners",
|
||||
)
|
||||
|
||||
for key in controlnet_state_dict:
|
||||
controlnet_state_dict[key] = controlnet_state_dict[key].to(
|
||||
device=target_unet.device, dtype=target_unet.dtype
|
||||
)
|
||||
adapter = SD1ControlnetAdapter(
|
||||
target=target_unet, name=name, scale=scale, weights=controlnet_state_dict
|
||||
)
|
||||
|
||||
return adapter
|
||||
|
||||
|
||||
@memory_managed_model("controlnet")
|
||||
def load_controlnet(control_weights_location, half_mode):
|
||||
controlnet_state_dict = load_state_dict(
|
||||
@ -447,3 +622,164 @@ def extract_huggingface_repo_commit_file_from_url(url):
|
||||
filepath = "/".join(path_components[4:])
|
||||
|
||||
return repo, commit_hash, filepath
|
||||
|
||||
|
||||
def download_diffusers_weights(repo, sub, filename):
|
||||
from imaginairy.model_manager import get_cached_url_path
|
||||
|
||||
url = f"https://huggingface.co/{repo}/resolve/main/{sub}/{filename}"
|
||||
return get_cached_url_path(url, category="weights")
|
||||
|
||||
|
||||
@lru_cache
|
||||
def load_stable_diffusion_diffusers_weights(diffusers_repo, device=None):
|
||||
from imaginairy.utils import get_device
|
||||
from imaginairy.weight_management.conversion import cast_weights
|
||||
from imaginairy.weight_management.utils import (
|
||||
COMPONENT_NAMES,
|
||||
FORMAT_NAMES,
|
||||
MODEL_NAMES,
|
||||
)
|
||||
|
||||
if device is None:
|
||||
device = get_device()
|
||||
vae_weights_path = download_diffusers_weights(
|
||||
repo=diffusers_repo, sub="vae", filename="diffusion_pytorch_model.safetensors"
|
||||
)
|
||||
vae_weights = open_weights(vae_weights_path, device=device)
|
||||
vae_weights = cast_weights(
|
||||
source_weights=vae_weights,
|
||||
source_model_name=MODEL_NAMES.SD15,
|
||||
source_component_name=COMPONENT_NAMES.VAE,
|
||||
source_format=FORMAT_NAMES.DIFFUSERS,
|
||||
dest_format=FORMAT_NAMES.REFINERS,
|
||||
)
|
||||
|
||||
unet_weights_path = download_diffusers_weights(
|
||||
repo=diffusers_repo, sub="unet", filename="diffusion_pytorch_model.safetensors"
|
||||
)
|
||||
unet_weights = open_weights(unet_weights_path, device=device)
|
||||
unet_weights = cast_weights(
|
||||
source_weights=unet_weights,
|
||||
source_model_name=MODEL_NAMES.SD15,
|
||||
source_component_name=COMPONENT_NAMES.UNET,
|
||||
source_format=FORMAT_NAMES.DIFFUSERS,
|
||||
dest_format=FORMAT_NAMES.REFINERS,
|
||||
)
|
||||
|
||||
text_encoder_weights_path = download_diffusers_weights(
|
||||
repo=diffusers_repo, sub="text_encoder", filename="model.safetensors"
|
||||
)
|
||||
text_encoder_weights = open_weights(text_encoder_weights_path, device=device)
|
||||
text_encoder_weights = cast_weights(
|
||||
source_weights=text_encoder_weights,
|
||||
source_model_name=MODEL_NAMES.SD15,
|
||||
source_component_name=COMPONENT_NAMES.TEXT_ENCODER,
|
||||
source_format=FORMAT_NAMES.DIFFUSERS,
|
||||
dest_format=FORMAT_NAMES.REFINERS,
|
||||
)
|
||||
|
||||
return vae_weights, unet_weights, text_encoder_weights
|
||||
|
||||
|
||||
def open_weights(filepath, device=None):
|
||||
from imaginairy.utils import get_device
|
||||
|
||||
if device is None:
|
||||
device = get_device()
|
||||
|
||||
if "safetensor" in filepath.lower():
|
||||
from refiners.fluxion.utils import safe_open
|
||||
|
||||
with safe_open(path=filepath, framework="pytorch", device=device) as tensors:
|
||||
state_dict = {key: tensors.get_tensor(key) for key in tensors}
|
||||
else:
|
||||
import torch
|
||||
|
||||
state_dict = torch.load(filepath, map_location=device)
|
||||
|
||||
while "state_dict" in state_dict:
|
||||
state_dict = state_dict["state_dict"]
|
||||
|
||||
return state_dict
|
||||
|
||||
|
||||
@lru_cache
|
||||
def load_stable_diffusion_compvis_weights(weights_url):
|
||||
from imaginairy.model_manager import get_cached_url_path
|
||||
from imaginairy.utils import get_device
|
||||
from imaginairy.weight_management.conversion import cast_weights
|
||||
from imaginairy.weight_management.utils import (
|
||||
COMPONENT_NAMES,
|
||||
FORMAT_NAMES,
|
||||
MODEL_NAMES,
|
||||
)
|
||||
|
||||
weights_path = get_cached_url_path(weights_url, category="weights")
|
||||
logger.info(f"Loading weights from {weights_path}")
|
||||
state_dict = open_weights(weights_path, device=get_device())
|
||||
|
||||
text_encoder_prefix = "cond_stage_model."
|
||||
cut_start = len(text_encoder_prefix)
|
||||
text_encoder_state_dict = {
|
||||
k[cut_start:]: v
|
||||
for k, v in state_dict.items()
|
||||
if k.startswith(text_encoder_prefix)
|
||||
}
|
||||
text_encoder_state_dict = cast_weights(
|
||||
source_weights=text_encoder_state_dict,
|
||||
source_model_name=MODEL_NAMES.SD15,
|
||||
source_component_name=COMPONENT_NAMES.TEXT_ENCODER,
|
||||
source_format=FORMAT_NAMES.COMPVIS,
|
||||
dest_format=FORMAT_NAMES.DIFFUSERS,
|
||||
)
|
||||
text_encoder_state_dict = cast_weights(
|
||||
source_weights=text_encoder_state_dict,
|
||||
source_model_name=MODEL_NAMES.SD15,
|
||||
source_component_name=COMPONENT_NAMES.TEXT_ENCODER,
|
||||
source_format=FORMAT_NAMES.DIFFUSERS,
|
||||
dest_format=FORMAT_NAMES.REFINERS,
|
||||
)
|
||||
|
||||
vae_prefix = "first_stage_model."
|
||||
cut_start = len(vae_prefix)
|
||||
vae_state_dict = {
|
||||
k[cut_start:]: v for k, v in state_dict.items() if k.startswith(vae_prefix)
|
||||
}
|
||||
vae_state_dict = cast_weights(
|
||||
source_weights=vae_state_dict,
|
||||
source_model_name=MODEL_NAMES.SD15,
|
||||
source_component_name=COMPONENT_NAMES.VAE,
|
||||
source_format=FORMAT_NAMES.COMPVIS,
|
||||
dest_format=FORMAT_NAMES.DIFFUSERS,
|
||||
)
|
||||
vae_state_dict = cast_weights(
|
||||
source_weights=vae_state_dict,
|
||||
source_model_name=MODEL_NAMES.SD15,
|
||||
source_component_name=COMPONENT_NAMES.VAE,
|
||||
source_format=FORMAT_NAMES.DIFFUSERS,
|
||||
dest_format=FORMAT_NAMES.REFINERS,
|
||||
)
|
||||
|
||||
unet_prefix = "model."
|
||||
cut_start = len(unet_prefix)
|
||||
unet_state_dict = {
|
||||
k[cut_start:]: v for k, v in state_dict.items() if k.startswith(unet_prefix)
|
||||
}
|
||||
unet_state_dict = cast_weights(
|
||||
source_weights=unet_state_dict,
|
||||
source_model_name=MODEL_NAMES.SD15,
|
||||
source_component_name=COMPONENT_NAMES.UNET,
|
||||
source_format=FORMAT_NAMES.COMPVIS,
|
||||
dest_format=FORMAT_NAMES.DIFFUSERS,
|
||||
)
|
||||
|
||||
unet_state_dict = cast_weights(
|
||||
source_weights=unet_state_dict,
|
||||
source_model_name=MODEL_NAMES.SD15,
|
||||
source_component_name=COMPONENT_NAMES.UNET,
|
||||
source_format=FORMAT_NAMES.DIFFUSERS,
|
||||
dest_format=FORMAT_NAMES.REFINERS,
|
||||
)
|
||||
|
||||
return vae_state_dict, unet_state_dict, text_encoder_state_dict
|
||||
|
184
imaginairy/modules/refiners_sd.py
Normal file
@ -0,0 +1,184 @@
|
||||
import math
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
from refiners.fluxion.layers.chain import ChainError
|
||||
from refiners.foundationals.latent_diffusion import (
|
||||
StableDiffusion_1 as RefinerStableDiffusion_1,
|
||||
StableDiffusion_1_Inpainting as RefinerStableDiffusion_1_Inpainting,
|
||||
)
|
||||
from refiners.foundationals.latent_diffusion.stable_diffusion_1.model import (
|
||||
SD1Autoencoder,
|
||||
)
|
||||
from torch import Tensor, nn
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.modules.utils import _pair
|
||||
|
||||
from imaginairy.feather_tile import rebuild_image, tile_image
|
||||
from imaginairy.modules.autoencoder import logger
|
||||
|
||||
TileModeType = Literal["", "x", "y", "xy"]
|
||||
|
||||
|
||||
def _tile_mode_conv2d_conv_forward(
|
||||
self, input: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor # noqa
|
||||
):
|
||||
if self.padding_modeX == self.padding_modeY:
|
||||
self.padding_mode = self.padding_modeX
|
||||
return self._orig_conv_forward(input, weight, bias)
|
||||
|
||||
w1 = F.pad(input, self.paddingX, mode=self.padding_modeX)
|
||||
del input
|
||||
|
||||
w2 = F.pad(w1, self.paddingY, mode=self.padding_modeY)
|
||||
del w1
|
||||
|
||||
return F.conv2d(w2, weight, bias, self.stride, _pair(0), self.dilation, self.groups)
|
||||
|
||||
|
||||
class TileModeMixin(nn.Module):
|
||||
def set_tile_mode(self, tile_mode: TileModeType = ""):
|
||||
"""
|
||||
For creating seamless tile images.
|
||||
|
||||
Args:
|
||||
tile_mode: One of "", "x", "y", "xy". If "x", the image will be tiled horizontally. If "y", the image will be
|
||||
tiled vertically. If "xy", the image will be tiled both horizontally and vertically.
|
||||
"""
|
||||
|
||||
tile_x = "x" in tile_mode
|
||||
tile_y = "y" in tile_mode
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
if not hasattr(m, "_orig_conv_forward"):
|
||||
# patch with a function that can handle tiling in a single direction
|
||||
m._initial_padding_mode = m.padding_mode
|
||||
m._orig_conv_forward = m._conv_forward
|
||||
m._conv_forward = _tile_mode_conv2d_conv_forward.__get__(
|
||||
m, nn.Conv2d
|
||||
)
|
||||
m.padding_modeX = "circular" if tile_x else "constant"
|
||||
m.padding_modeY = "circular" if tile_y else "constant"
|
||||
if m.padding_modeY == m.padding_modeX:
|
||||
m.padding_mode = m.padding_modeX
|
||||
m.paddingX = (
|
||||
m._reversed_padding_repeated_twice[0],
|
||||
m._reversed_padding_repeated_twice[1],
|
||||
0,
|
||||
0,
|
||||
)
|
||||
m.paddingY = (
|
||||
0,
|
||||
0,
|
||||
m._reversed_padding_repeated_twice[2],
|
||||
m._reversed_padding_repeated_twice[3],
|
||||
)
|
||||
|
||||
|
||||
class StableDiffusion_1(TileModeMixin, RefinerStableDiffusion_1):
|
||||
pass
|
||||
|
||||
|
||||
class StableDiffusion_1_Inpainting(TileModeMixin, RefinerStableDiffusion_1_Inpainting):
|
||||
def compute_self_attention_guidance(
|
||||
self,
|
||||
x: Tensor,
|
||||
noise: Tensor,
|
||||
step: int,
|
||||
*,
|
||||
clip_text_embedding: Tensor,
|
||||
**kwargs: Tensor,
|
||||
) -> Tensor:
|
||||
sag = self._find_sag_adapter()
|
||||
assert sag is not None
|
||||
assert self.mask_latents is not None
|
||||
assert self.target_image_latents is not None
|
||||
|
||||
degraded_latents = sag.compute_degraded_latents(
|
||||
scheduler=self.scheduler,
|
||||
latents=x,
|
||||
noise=noise,
|
||||
step=step,
|
||||
classifier_free_guidance=True,
|
||||
)
|
||||
|
||||
negative_embedding, _ = clip_text_embedding.chunk(2)
|
||||
timestep = self.scheduler.timesteps[step].unsqueeze(dim=0)
|
||||
self.set_unet_context(
|
||||
timestep=timestep, clip_text_embedding=negative_embedding, **kwargs
|
||||
)
|
||||
x = torch.cat(
|
||||
tensors=(degraded_latents, self.mask_latents, self.target_image_latents),
|
||||
dim=1,
|
||||
)
|
||||
degraded_noise = self.unet(x)
|
||||
|
||||
return sag.scale * (noise - degraded_noise)
|
||||
|
||||
|
||||
class SD1AutoencoderSliced(SD1Autoencoder):
|
||||
max_chunk_size = 2048
|
||||
min_chunk_size = 64
|
||||
|
||||
def decode(self, x):
|
||||
while self.__class__.max_chunk_size > self.__class__.min_chunk_size:
|
||||
if self.max_chunk_size**2 > x.shape[2] * x.shape[3]:
|
||||
try:
|
||||
return self.decode_all_at_once(x)
|
||||
except ChainError as e:
|
||||
if "OutOfMemoryError" not in str(e):
|
||||
raise
|
||||
self.__class__.max_chunk_size = (
|
||||
int(math.sqrt(x.shape[2] * x.shape[3])) // 2
|
||||
)
|
||||
logger.info(
|
||||
f"Ran out of memory. Trying tiled decode with chunk size {self.__class__.max_chunk_size}"
|
||||
)
|
||||
else:
|
||||
try:
|
||||
return self.decode_sliced(x, chunk_size=self.max_chunk_size)
|
||||
except ChainError as e:
|
||||
if "OutOfMemoryError" not in str(e):
|
||||
raise
|
||||
self.__class__.max_chunk_size = self.max_chunk_size // 2
|
||||
self.__class__.max_chunk_size = max(
|
||||
self.__class__.max_chunk_size, self.__class__.min_chunk_size
|
||||
)
|
||||
logger.info(
|
||||
f"Ran out of memory. Trying tiled decode with chunk size {self.__class__.max_chunk_size}"
|
||||
)
|
||||
raise RuntimeError("Could not decode image")
|
||||
|
||||
def decode_all_at_once(self, x: Tensor) -> Tensor:
|
||||
decoder = self[1]
|
||||
x = decoder(x / self.encoder_scale)
|
||||
return x
|
||||
|
||||
def decode_sliced(self, x, chunk_size=128):
|
||||
"""
|
||||
decodes the tensor in slices.
|
||||
|
||||
This results in image portions that don't exactly match, so we overlap, feather, and merge to reduce
|
||||
(but not completely eliminate) impact.
|
||||
"""
|
||||
b, c, h, w = x.size()
|
||||
final_tensor = torch.zeros([1, 3, h * 8, w * 8], device=x.device)
|
||||
for x_latent in x.split(1):
|
||||
decoded_chunks = []
|
||||
overlap_pct = 0.5
|
||||
chunks = tile_image(
|
||||
x_latent, tile_size=chunk_size, overlap_percent=overlap_pct
|
||||
)
|
||||
|
||||
for latent_chunk in chunks:
|
||||
# latent_chunk = self.post_quant_conv(latent_chunk)
|
||||
dec = self.decode_all_at_once(latent_chunk)
|
||||
decoded_chunks.append(dec)
|
||||
final_tensor = rebuild_image(
|
||||
decoded_chunks,
|
||||
base_img=final_tensor,
|
||||
tile_size=chunk_size * 8,
|
||||
overlap_percent=overlap_pct,
|
||||
)
|
||||
|
||||
return final_tensor
|
@ -64,7 +64,7 @@ class KDiffusionSampler(ImageSampler, ABC):
|
||||
super().__init__(model)
|
||||
denoiseer_cls = (
|
||||
StandardCompVisVDenoiser
|
||||
if model.parameterization == "v"
|
||||
if getattr(model, "parameterization", "") == "v"
|
||||
else StandardCompVisDenoiser
|
||||
)
|
||||
self.cv_denoiser = denoiseer_cls(model)
|
||||
|
@ -21,7 +21,7 @@ def get_device() -> str:
|
||||
return "cuda"
|
||||
|
||||
if torch.backends.mps.is_available():
|
||||
return "mps:0"
|
||||
return "mps"
|
||||
|
||||
return "cpu"
|
||||
|
||||
@ -250,5 +250,5 @@ def check_torch_version():
|
||||
"""
|
||||
from packaging import version
|
||||
|
||||
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
||||
raise RuntimeError("ImaginAIry is not compatible with torch>=2.0.0")
|
||||
if version.parse(torch.__version__) < version.parse("2.0.0"):
|
||||
raise RuntimeError("ImaginAIry is not compatible with torch<2.0.0")
|
||||
|
0
imaginairy/weight_management/__init__.py
Normal file
113
imaginairy/weight_management/conversion.py
Normal file
@ -0,0 +1,113 @@
|
||||
import os.path
|
||||
from dataclasses import dataclass
|
||||
from functools import lru_cache
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from imaginairy.weight_management import utils
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
@dataclass
|
||||
class WeightMap:
|
||||
model_name: str
|
||||
component_name: str
|
||||
source_format: str
|
||||
dest_format: str
|
||||
|
||||
def __post_init__(self):
|
||||
self.model_name = self.model_name.replace("_", "-")
|
||||
self.component_name = self.component_name.replace("_", "-")
|
||||
self.source_format = self.source_format.replace("_", "-")
|
||||
self.dest_format = self.dest_format.replace("_", "-")
|
||||
|
||||
self._loaded_mapping_info = None
|
||||
|
||||
@property
|
||||
def filename(self):
|
||||
return f"{self.model_name}_{self.component_name}_{self.source_format}_TO_{self.dest_format}.json"
|
||||
|
||||
@property
|
||||
def filepath(self):
|
||||
return os.path.join(utils.WEIGHT_MAPS_PATH, self.filename)
|
||||
|
||||
@property
|
||||
def _mapping_info(self):
|
||||
if self._loaded_mapping_info is None:
|
||||
import json
|
||||
|
||||
with open(self.filepath) as f:
|
||||
self._loaded_mapping_info = json.load(f)
|
||||
return self._loaded_mapping_info
|
||||
|
||||
@property
|
||||
def mapping(self):
|
||||
return self._mapping_info["mapping"]
|
||||
|
||||
@property
|
||||
def source_aliases(self):
|
||||
return self._mapping_info.get("source_aliases", {})
|
||||
|
||||
@property
|
||||
def ignorable_prefixes(self):
|
||||
return self._mapping_info.get("ignorable_prefixes", [])
|
||||
|
||||
@property
|
||||
def reshapes(self):
|
||||
return self._mapping_info.get("reshapes", {})
|
||||
|
||||
@property
|
||||
def all_valid_prefixes(self):
|
||||
return (
|
||||
set(self.mapping.keys())
|
||||
| set(self.source_aliases.keys())
|
||||
| set(self.ignorable_prefixes)
|
||||
)
|
||||
|
||||
def could_convert(self, source_weights):
|
||||
source_keys = set(source_weights.keys())
|
||||
return source_keys.issubset(self.all_valid_prefixes)
|
||||
|
||||
def cast_weights(self, source_weights):
|
||||
converted_state_dict: dict[str, Tensor] = {}
|
||||
for source_key in source_weights:
|
||||
source_prefix, suffix = source_key.rsplit(sep=".", maxsplit=1)
|
||||
# handle aliases
|
||||
source_prefix = self.source_aliases.get(source_prefix, source_prefix)
|
||||
try:
|
||||
target_prefix = self.mapping[source_prefix]
|
||||
except KeyError:
|
||||
continue
|
||||
target_key = ".".join([target_prefix, suffix])
|
||||
converted_state_dict[target_key] = source_weights[source_key]
|
||||
|
||||
for key, new_shape in self.reshapes.items():
|
||||
converted_state_dict[key] = converted_state_dict[key].reshape(new_shape)
|
||||
|
||||
return converted_state_dict
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def load_state_dict_conversion_maps():
|
||||
import json
|
||||
|
||||
conversion_maps = {}
|
||||
from importlib.resources import files
|
||||
|
||||
for file in files("imaginairy").joinpath("weight_conversion/maps").iterdir():
|
||||
if file.is_file() and file.suffix == ".json":
|
||||
conversion_maps[file.name] = json.loads(file.read_text())
|
||||
return conversion_maps
|
||||
|
||||
|
||||
def cast_weights(
|
||||
source_weights, source_model_name, source_component_name, source_format, dest_format
|
||||
):
|
||||
weight_map = WeightMap(
|
||||
model_name=source_model_name,
|
||||
component_name=source_component_name,
|
||||
source_format=source_format,
|
||||
dest_format=dest_format,
|
||||
)
|
||||
return weight_map.cast_weights(source_weights)
|
283
imaginairy/weight_management/execution_trace.py
Normal file
@ -0,0 +1,283 @@
|
||||
import torch
|
||||
from transformers import CLIPTextModelWithProjection
|
||||
|
||||
from imaginairy.model_manager import get_diffusion_model
|
||||
from imaginairy.utils import get_device
|
||||
from imaginairy.weight_management import utils
|
||||
|
||||
|
||||
def trace_execution_order(module, args, func_name=None):
|
||||
"""
|
||||
Trace the execution order of a torch module and store full hierarchical state_dict paths.
|
||||
:param module: The module to trace.
|
||||
:param args: The arguments to pass to the module.
|
||||
:return: A list of full hierarchical state_dict paths in the order they were used.
|
||||
"""
|
||||
execution_order = []
|
||||
|
||||
hooks = []
|
||||
|
||||
def add_hooks(module, prefix=""):
|
||||
for name, submodule in module.named_children():
|
||||
# Construct the hierarchical name
|
||||
module_full_name = f"{prefix}.{name}" if prefix else name
|
||||
|
||||
def log(mod, inp, out, module_full_name=module_full_name):
|
||||
hook(mod, module_full_name)
|
||||
|
||||
hooks.append(submodule.register_forward_hook(log))
|
||||
|
||||
# Recursively add hooks to all child modules
|
||||
add_hooks(submodule, module_full_name)
|
||||
|
||||
def hook(module, module_full_name):
|
||||
# Retrieve state_dict and iterate over its items to get full paths
|
||||
for name, param in module.named_parameters(recurse=False):
|
||||
full_path = f"{module_full_name}.{name}"
|
||||
execution_order.append(full_path)
|
||||
for name, buffer in module.named_buffers(recurse=False):
|
||||
print(name)
|
||||
full_path = f"{module_full_name}.{name}"
|
||||
execution_order.append(full_path)
|
||||
|
||||
# Initialize hooks
|
||||
add_hooks(module)
|
||||
|
||||
# Execute the module
|
||||
with torch.no_grad():
|
||||
if func_name is not None:
|
||||
getattr(module, func_name)(*args)
|
||||
else:
|
||||
module(*args)
|
||||
|
||||
# Remove hooks
|
||||
for hook in hooks:
|
||||
hook.remove()
|
||||
|
||||
return execution_order
|
||||
|
||||
|
||||
def trace_compvis_execution_order(device=None):
|
||||
model = get_diffusion_model()._mmmw_load_model()
|
||||
|
||||
# vae
|
||||
image_size = 256
|
||||
img_in = torch.randn(1, 3, image_size, image_size).to(get_device())
|
||||
vae_execution_order = trace_execution_order(
|
||||
model.first_stage_model, (img_in,), func_name="encode_all_at_once"
|
||||
)
|
||||
|
||||
latent_in = torch.randn(1, 4, 32, 32).to(get_device())
|
||||
vae_execution_order.extend(
|
||||
trace_execution_order(model.first_stage_model, (latent_in,), func_name="decode")
|
||||
)
|
||||
# text encoder model
|
||||
text = "hello"
|
||||
text_execution_order = trace_execution_order(model.cond_stage_model, (text,))
|
||||
|
||||
# unet
|
||||
latent_in = torch.randn(1, 4, 32, 32).to(get_device())
|
||||
text_embedding = [torch.randn(1, 77, 768).to(get_device())]
|
||||
timestep = torch.tensor(data=[0]).to(get_device())
|
||||
unet_execution_order = trace_execution_order(
|
||||
model.model, (latent_in, timestep, text_embedding, text_embedding)
|
||||
)
|
||||
|
||||
return vae_execution_order, text_execution_order, unet_execution_order
|
||||
|
||||
|
||||
def trace_sd15_diffusers_execution_order(device=None):
|
||||
from diffusers import AutoencoderKL, UNet2DConditionModel
|
||||
|
||||
if device is None:
|
||||
device = get_device()
|
||||
|
||||
# vae
|
||||
image_size = 256
|
||||
img_in = torch.randn(1, 3, image_size, image_size).to(device)
|
||||
vae = AutoencoderKL.from_pretrained(
|
||||
pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5", subfolder="vae"
|
||||
).to(device)
|
||||
vae_execution_order = trace_execution_order(vae, (img_in,))
|
||||
|
||||
# text encoder model
|
||||
|
||||
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
||||
pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
|
||||
subfolder="text_encoder",
|
||||
).to(device)
|
||||
tokens = torch.Tensor(
|
||||
[
|
||||
[
|
||||
49406,
|
||||
3306,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
49407,
|
||||
]
|
||||
]
|
||||
)
|
||||
tokens = tokens.to(device).to(torch.int64)
|
||||
|
||||
text_execution_order = trace_execution_order(text_encoder, (tokens,))
|
||||
|
||||
# unet
|
||||
latent_in = torch.randn(1, 4, 32, 32).to(device)
|
||||
text_embedding = torch.randn(1, 77, 768).to(device)
|
||||
timestep = torch.tensor(data=[0]).to(device)
|
||||
unet = UNet2DConditionModel.from_pretrained(
|
||||
pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5", subfolder="unet"
|
||||
).to(device)
|
||||
unet_execution_order = trace_execution_order(
|
||||
unet, (latent_in, timestep, text_embedding)
|
||||
)
|
||||
|
||||
return vae_execution_order, text_execution_order, unet_execution_order
|
||||
|
||||
|
||||
def calc_and_save_compvis_traces():
|
||||
model_name = "stable-diffusion-1-5"
|
||||
format_name = "compvis"
|
||||
|
||||
(
|
||||
vae_execution_order,
|
||||
text_execution_order,
|
||||
unet_execution_order,
|
||||
) = trace_compvis_execution_order()
|
||||
|
||||
process_execution_order(
|
||||
model_name=model_name,
|
||||
format_name=format_name,
|
||||
component_name="vae",
|
||||
execution_order=vae_execution_order,
|
||||
)
|
||||
process_execution_order(
|
||||
model_name=model_name,
|
||||
format_name=format_name,
|
||||
component_name="text",
|
||||
execution_order=text_execution_order,
|
||||
)
|
||||
process_execution_order(
|
||||
model_name=model_name,
|
||||
format_name=format_name,
|
||||
component_name="unet",
|
||||
execution_order=unet_execution_order,
|
||||
)
|
||||
|
||||
|
||||
def calc_and_save_sd15_diffusers_traces():
|
||||
model_name = "stable-diffusion-1-5"
|
||||
format_name = "diffusers"
|
||||
|
||||
(
|
||||
vae_execution_order,
|
||||
text_execution_order,
|
||||
unet_execution_order,
|
||||
) = trace_sd15_diffusers_execution_order()
|
||||
|
||||
process_execution_order(
|
||||
model_name=model_name,
|
||||
format_name=format_name,
|
||||
component_name="vae",
|
||||
execution_order=vae_execution_order,
|
||||
)
|
||||
process_execution_order(
|
||||
model_name=model_name,
|
||||
format_name=format_name,
|
||||
component_name="text",
|
||||
execution_order=text_execution_order,
|
||||
)
|
||||
process_execution_order(
|
||||
model_name=model_name,
|
||||
format_name=format_name,
|
||||
component_name="unet",
|
||||
execution_order=unet_execution_order,
|
||||
)
|
||||
|
||||
|
||||
def process_execution_order(model_name, component_name, format_name, execution_order):
|
||||
prefixes = utils.prefixes_only(execution_order)
|
||||
utils.save_model_info(
|
||||
model_name,
|
||||
component_name,
|
||||
format_name,
|
||||
"prefix-execution-order",
|
||||
prefixes,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
calc_and_save_sd15_diffusers_traces()
|
||||
calc_and_save_compvis_traces()
|
57
imaginairy/weight_management/generate_conversion_maps.py
Normal file
@ -0,0 +1,57 @@
|
||||
import itertools
|
||||
import json
|
||||
import os
|
||||
from collections import defaultdict
|
||||
|
||||
from imaginairy.weight_management.utils import WEIGHT_INFO_PATH, WEIGHT_MAPS_PATH
|
||||
|
||||
|
||||
def generate_conversion_maps():
|
||||
execution_orders_map = defaultdict(dict)
|
||||
for filename in os.listdir(WEIGHT_INFO_PATH):
|
||||
if not filename.endswith("prefix-execution-order.json"):
|
||||
continue
|
||||
|
||||
base_name = filename.split(".", 1)[0]
|
||||
model_name, component_name, format_name = base_name.split("_")
|
||||
execution_orders_map[(model_name, component_name)][format_name] = filename
|
||||
|
||||
for (model_name, component_name), format_lookup in execution_orders_map.items():
|
||||
if len(format_lookup) <= 1:
|
||||
continue
|
||||
|
||||
formats = list(format_lookup.keys())
|
||||
for format_a, format_b in itertools.permutations(formats, 2):
|
||||
filename_a = format_lookup[format_a]
|
||||
filename_b = format_lookup[format_b]
|
||||
with open(os.path.join(WEIGHT_INFO_PATH, filename_a)) as f:
|
||||
execution_order_a = json.load(f)
|
||||
with open(os.path.join(WEIGHT_INFO_PATH, filename_b)) as f:
|
||||
execution_order_b = json.load(f)
|
||||
|
||||
mapping_filename = (
|
||||
f"{model_name}_{component_name}_{format_a}_TO_{format_b}.json"
|
||||
)
|
||||
mapping_filepath = os.path.join(WEIGHT_MAPS_PATH, mapping_filename)
|
||||
print(f"Creating {mapping_filename}...")
|
||||
if os.path.exists(mapping_filepath):
|
||||
continue
|
||||
|
||||
if len(execution_order_a) != len(execution_order_b):
|
||||
print(
|
||||
f"Could not create {mapping_filename} - Execution orders for {format_a} and {format_b} have different lengths"
|
||||
)
|
||||
continue
|
||||
|
||||
mapping = dict(zip(execution_order_a, execution_order_b))
|
||||
mapping_info = {
|
||||
"mapping": mapping,
|
||||
"source_aliases": {},
|
||||
"ignorable_prefixes": [],
|
||||
}
|
||||
with open(mapping_filepath, "w") as f:
|
||||
json.dump(mapping_info, f, indent=2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
generate_conversion_maps()
|
137
imaginairy/weight_management/generate_weight_info.py
Normal file
@ -0,0 +1,137 @@
|
||||
import safetensors
|
||||
|
||||
from imaginairy.model_manager import (
|
||||
get_cached_url_path,
|
||||
open_weights,
|
||||
resolve_model_paths,
|
||||
)
|
||||
from imaginairy.weight_management import utils
|
||||
from imaginairy.weight_management.pattern_collapse import find_state_dict_key_patterns
|
||||
from imaginairy.weight_management.utils import save_model_info
|
||||
|
||||
|
||||
def save_compvis_patterns():
|
||||
(
|
||||
model_metadata,
|
||||
weights_url,
|
||||
config_path,
|
||||
control_weights_paths,
|
||||
) = resolve_model_paths(
|
||||
weights_path="openjourney-v1",
|
||||
)
|
||||
weights_path = get_cached_url_path(weights_url, category="weights")
|
||||
|
||||
with safetensors.safe_open(weights_path, "pytorch") as f:
|
||||
weights_keys = f.keys()
|
||||
|
||||
text_encoder_prefix = "cond_stage_model.transformer.text_model"
|
||||
text_encoder_keys = [k for k in weights_keys if k.startswith(text_encoder_prefix)]
|
||||
save_weight_info(
|
||||
model_name=utils.MODEL_NAMES.SD15,
|
||||
component_name=utils.COMPONENT_NAMES.TEXT_ENCODER,
|
||||
format_name=utils.FORMAT_NAMES.COMPVIS,
|
||||
weights_keys=text_encoder_keys,
|
||||
)
|
||||
|
||||
vae_prefix = "first_stage_model"
|
||||
vae_keys = [k for k in weights_keys if k.startswith(vae_prefix)]
|
||||
save_weight_info(
|
||||
model_name=utils.MODEL_NAMES.SD15,
|
||||
component_name=utils.COMPONENT_NAMES.VAE,
|
||||
format_name=utils.FORMAT_NAMES.COMPVIS,
|
||||
weights_keys=vae_keys,
|
||||
)
|
||||
|
||||
unet_prefix = "model.diffusion_model"
|
||||
unet_keys = [k for k in weights_keys if k.startswith(unet_prefix)]
|
||||
save_weight_info(
|
||||
model_name=utils.MODEL_NAMES.SD15,
|
||||
component_name=utils.COMPONENT_NAMES.UNET,
|
||||
format_name=utils.FORMAT_NAMES.COMPVIS,
|
||||
weights_keys=unet_keys,
|
||||
)
|
||||
|
||||
|
||||
def save_diffusers_patterns():
|
||||
save_weight_info(
|
||||
model_name=utils.MODEL_NAMES.SD15,
|
||||
component_name=utils.COMPONENT_NAMES.VAE,
|
||||
format_name=utils.FORMAT_NAMES.DIFFUSERS,
|
||||
weights_url="https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/vae/diffusion_pytorch_model.fp16.safetensors",
|
||||
)
|
||||
|
||||
save_weight_info(
|
||||
model_name=utils.MODEL_NAMES.SD15,
|
||||
component_name=utils.COMPONENT_NAMES.UNET,
|
||||
format_name=utils.FORMAT_NAMES.DIFFUSERS,
|
||||
weights_url="https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/unet/diffusion_pytorch_model.fp16.safetensors",
|
||||
)
|
||||
|
||||
save_weight_info(
|
||||
model_name=utils.MODEL_NAMES.SD15,
|
||||
component_name=utils.COMPONENT_NAMES.TEXT_ENCODER,
|
||||
format_name=utils.FORMAT_NAMES.DIFFUSERS,
|
||||
weights_url="https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/text_encoder/model.fp16.safetensors",
|
||||
)
|
||||
|
||||
|
||||
def save_lora_patterns():
|
||||
filepath = "/Users/bryce/projects/sandbox-img-gen/refiners/weights/pytorch_lora_weights-refiners.safetensors"
|
||||
state_dict = open_weights(filepath, device="cpu")
|
||||
|
||||
save_weight_info(
|
||||
model_name=utils.MODEL_NAMES.SD15,
|
||||
component_name=utils.COMPONENT_NAMES.LORA,
|
||||
format_name=utils.FORMAT_NAMES.REFINERS,
|
||||
weights_keys=list(state_dict.keys()),
|
||||
)
|
||||
|
||||
save_weight_info(
|
||||
model_name=utils.MODEL_NAMES.SD15,
|
||||
component_name=utils.COMPONENT_NAMES.LORA,
|
||||
format_name=utils.FORMAT_NAMES.DIFFUSERS,
|
||||
weights_url="https://huggingface.co/pcuenq/pokemon-lora/resolve/main/pytorch_lora_weights.bin",
|
||||
)
|
||||
|
||||
|
||||
def save_weight_info(
|
||||
model_name, component_name, format_name, weights_url=None, weights_keys=None
|
||||
):
|
||||
if weights_keys is None and weights_url is None:
|
||||
msg = "Either weights_keys or weights_url must be provided"
|
||||
raise ValueError(msg)
|
||||
|
||||
if weights_keys is None:
|
||||
weights_path = get_cached_url_path(weights_url, category="weights")
|
||||
|
||||
state_dict = open_weights(weights_path, device="cpu")
|
||||
weights_keys = list(state_dict.keys())
|
||||
|
||||
# prefixes = utils.prefixes_only(weights_keys)
|
||||
|
||||
save_model_info(
|
||||
model_name=model_name,
|
||||
component_name=component_name,
|
||||
format_name=format_name,
|
||||
info_type="weights_keys",
|
||||
data=weights_keys,
|
||||
)
|
||||
|
||||
patterns = find_state_dict_key_patterns(weights_keys)
|
||||
save_model_info(
|
||||
model_name=model_name,
|
||||
component_name=component_name,
|
||||
format_name=format_name,
|
||||
info_type="patterns",
|
||||
data=patterns,
|
||||
)
|
||||
|
||||
|
||||
def save_patterns():
|
||||
save_lora_patterns()
|
||||
# save_compvis_patterns()
|
||||
# save_diffusers_patterns()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
save_patterns()
|
@ -0,0 +1,195 @@
|
||||
{
|
||||
"mapping": {
|
||||
"time_embedding.linear_1": "TimestepEncoder.RangeEncoder.Linear_1",
|
||||
"time_embedding.linear_2": "TimestepEncoder.RangeEncoder.Linear_2",
|
||||
"down_blocks.2.resnets.0.time_emb_proj": "DownBlocks.Chain_8.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_out.0": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_out.0": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"down_blocks.2.resnets.1.time_emb_proj": "DownBlocks.Chain_9.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_out.0": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_out.0": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"down_blocks.3.resnets.0.time_emb_proj": "DownBlocks.Chain_11.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.3.resnets.1.time_emb_proj": "DownBlocks.Chain_12.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"mid_block.resnets.0.time_emb_proj": "MiddleBlock.ResidualBlock_1.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_out.0": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_out.0": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"mid_block.resnets.1.time_emb_proj": "MiddleBlock.ResidualBlock_2.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"conv_in": "DownBlocks.Chain_1.Conv2d",
|
||||
"controlnet_cond_embedding.conv_in": "DownBlocks.Chain_1.Residual.ConditionEncoder.Chain_1.Conv2d",
|
||||
"controlnet_cond_embedding.blocks.0": "DownBlocks.Chain_1.Residual.ConditionEncoder.Chain_2.Conv2d_1",
|
||||
"controlnet_cond_embedding.blocks.1": "DownBlocks.Chain_1.Residual.ConditionEncoder.Chain_2.Conv2d_2",
|
||||
"controlnet_cond_embedding.blocks.2": "DownBlocks.Chain_1.Residual.ConditionEncoder.Chain_3.Conv2d_1",
|
||||
"controlnet_cond_embedding.blocks.3": "DownBlocks.Chain_1.Residual.ConditionEncoder.Chain_3.Conv2d_2",
|
||||
"controlnet_cond_embedding.blocks.4": "DownBlocks.Chain_1.Residual.ConditionEncoder.Chain_4.Conv2d_1",
|
||||
"controlnet_cond_embedding.blocks.5": "DownBlocks.Chain_1.Residual.ConditionEncoder.Chain_4.Conv2d_2",
|
||||
"controlnet_cond_embedding.conv_out": "DownBlocks.Chain_1.Residual.ConditionEncoder.Conv2d",
|
||||
"down_blocks.0.resnets.0.norm1": "DownBlocks.Chain_2.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.0.resnets.0.norm2": "DownBlocks.Chain_2.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.0.attentions.0.norm": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"down_blocks.0.resnets.1.norm1": "DownBlocks.Chain_3.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.0.resnets.1.norm2": "DownBlocks.Chain_3.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.0.attentions.1.norm": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"down_blocks.1.resnets.0.norm1": "DownBlocks.Chain_5.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.0.resnets.0.conv1": "DownBlocks.Chain_2.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.0.resnets.0.conv2": "DownBlocks.Chain_2.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.0.resnets.1.conv1": "DownBlocks.Chain_3.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.0.resnets.1.conv2": "DownBlocks.Chain_3.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.0.downsamplers.0.conv": "DownBlocks.Chain_4.Downsample.Conv2d",
|
||||
"down_blocks.0.resnets.0.time_emb_proj": "DownBlocks.Chain_2.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.ff.net.2": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"down_blocks.0.resnets.1.time_emb_proj": "DownBlocks.Chain_3.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.ff.net.2": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"controlnet_down_blocks.0": "DownBlocks.Chain_1.Passthrough.Conv2d",
|
||||
"down_blocks.0.attentions.0.proj_in": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"down_blocks.0.attentions.0.proj_out": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"controlnet_down_blocks.1": "DownBlocks.Chain_2.Passthrough.Conv2d",
|
||||
"down_blocks.0.attentions.1.proj_in": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"down_blocks.0.attentions.1.proj_out": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"controlnet_down_blocks.2": "DownBlocks.Chain_3.Passthrough.Conv2d",
|
||||
"controlnet_down_blocks.3": "DownBlocks.Chain_4.Passthrough.Conv2d",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm1": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm2": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm3": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm1": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm2": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm3": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_q": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_k": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_v": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_q": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_q": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_k": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_v": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_q": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_out.0": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_out.0": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_out.0": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_out.0": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_k": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_v": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_k": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_v": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.ff.net.0.proj": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.ff.net.0.proj": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"down_blocks.1.resnets.0.conv1": "DownBlocks.Chain_5.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.1.resnets.0.time_emb_proj": "DownBlocks.Chain_5.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.1.resnets.1.time_emb_proj": "DownBlocks.Chain_6.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.1.resnets.0.norm2": "DownBlocks.Chain_5.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.1.attentions.0.norm": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"down_blocks.1.resnets.1.norm1": "DownBlocks.Chain_6.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.1.resnets.1.norm2": "DownBlocks.Chain_6.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.1.attentions.1.norm": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"down_blocks.2.resnets.0.norm1": "DownBlocks.Chain_8.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.1.resnets.0.conv2": "DownBlocks.Chain_5.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.1.resnets.1.conv1": "DownBlocks.Chain_6.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.1.resnets.1.conv2": "DownBlocks.Chain_6.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.1.downsamplers.0.conv": "DownBlocks.Chain_7.Downsample.Conv2d",
|
||||
"down_blocks.1.resnets.0.conv_shortcut": "DownBlocks.Chain_5.ResidualBlock.Conv2d",
|
||||
"down_blocks.1.attentions.0.proj_in": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"down_blocks.1.attentions.0.proj_out": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"controlnet_down_blocks.4": "DownBlocks.Chain_5.Passthrough.Conv2d",
|
||||
"down_blocks.1.attentions.1.proj_in": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"down_blocks.1.attentions.1.proj_out": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"controlnet_down_blocks.5": "DownBlocks.Chain_6.Passthrough.Conv2d",
|
||||
"controlnet_down_blocks.6": "DownBlocks.Chain_7.Passthrough.Conv2d",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm1": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm2": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm3": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm1": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm2": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm3": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_q": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_q": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_q": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_k": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_q": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_out.0": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_out.0": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_k": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_v": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_v": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.ff.net.0.proj": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.ff.net.2": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.ff.net.2": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"down_blocks.2.resnets.0.conv1": "DownBlocks.Chain_8.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.2.resnets.0.norm2": "DownBlocks.Chain_8.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.2.attentions.0.norm": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"down_blocks.2.resnets.1.norm1": "DownBlocks.Chain_9.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.2.resnets.1.norm2": "DownBlocks.Chain_9.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.2.attentions.1.norm": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"down_blocks.3.resnets.0.norm1": "DownBlocks.Chain_11.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.3.resnets.0.norm2": "DownBlocks.Chain_11.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.3.resnets.1.norm1": "DownBlocks.Chain_12.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.3.resnets.1.norm2": "DownBlocks.Chain_12.ResidualBlock.Chain.GroupNorm_2",
|
||||
"mid_block.resnets.0.norm1": "MiddleBlock.ResidualBlock_1.Chain.GroupNorm_1",
|
||||
"mid_block.resnets.0.norm2": "MiddleBlock.ResidualBlock_1.Chain.GroupNorm_2",
|
||||
"mid_block.attentions.0.norm": "MiddleBlock.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"mid_block.resnets.1.norm1": "MiddleBlock.ResidualBlock_2.Chain.GroupNorm_1",
|
||||
"mid_block.resnets.1.norm2": "MiddleBlock.ResidualBlock_2.Chain.GroupNorm_2",
|
||||
"down_blocks.2.resnets.0.conv2": "DownBlocks.Chain_8.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.2.resnets.1.conv1": "DownBlocks.Chain_9.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.2.resnets.1.conv2": "DownBlocks.Chain_9.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.2.downsamplers.0.conv": "DownBlocks.Chain_10.Downsample.Conv2d",
|
||||
"down_blocks.3.resnets.0.conv1": "DownBlocks.Chain_11.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.3.resnets.0.conv2": "DownBlocks.Chain_11.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.3.resnets.1.conv1": "DownBlocks.Chain_12.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.3.resnets.1.conv2": "DownBlocks.Chain_12.ResidualBlock.Chain.Conv2d",
|
||||
"mid_block.resnets.0.conv1": "MiddleBlock.ResidualBlock_1.Chain.RangeAdapter2d.Conv2d",
|
||||
"mid_block.resnets.0.conv2": "MiddleBlock.ResidualBlock_1.Chain.Conv2d",
|
||||
"mid_block.resnets.1.conv1": "MiddleBlock.ResidualBlock_2.Chain.RangeAdapter2d.Conv2d",
|
||||
"mid_block.resnets.1.conv2": "MiddleBlock.ResidualBlock_2.Chain.Conv2d",
|
||||
"down_blocks.2.resnets.0.conv_shortcut": "DownBlocks.Chain_8.ResidualBlock.Conv2d",
|
||||
"down_blocks.2.attentions.0.proj_in": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"down_blocks.2.attentions.0.proj_out": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"controlnet_down_blocks.7": "DownBlocks.Chain_8.Passthrough.Conv2d",
|
||||
"down_blocks.2.attentions.1.proj_in": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"down_blocks.2.attentions.1.proj_out": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"controlnet_down_blocks.8": "DownBlocks.Chain_9.Passthrough.Conv2d",
|
||||
"controlnet_down_blocks.9": "DownBlocks.Chain_10.Passthrough.Conv2d",
|
||||
"controlnet_down_blocks.10": "DownBlocks.Chain_11.Passthrough.Conv2d",
|
||||
"controlnet_down_blocks.11": "DownBlocks.Chain_12.Passthrough.Conv2d",
|
||||
"mid_block.attentions.0.proj_in": "MiddleBlock.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"mid_block.attentions.0.proj_out": "MiddleBlock.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"controlnet_mid_block": "MiddleBlock.Passthrough.Conv2d",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm1": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm2": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm3": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm1": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm2": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm3": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm1": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm2": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm3": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_q": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_k": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_v": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_q": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_q": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_k": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_v": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_q": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_q": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_k": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_v": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_q": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_k": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_v": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_k": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_v": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_k": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_v": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.ff.net.0.proj": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.ff.net.0.proj": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"mid_block.attentions.0.transformer_blocks.0.ff.net.0.proj": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.ff.net.2": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.ff.net.2": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"mid_block.attentions.0.transformer_blocks.0.ff.net.2": "MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2"
|
||||
}
|
||||
}
|
@ -0,0 +1,106 @@
|
||||
{
|
||||
"mapping": {
|
||||
"transformer.text_model.embeddings.token_embedding": "text_model.embeddings.token_embedding",
|
||||
"transformer.text_model.embeddings.position_embedding": "text_model.embeddings.position_embedding",
|
||||
"transformer.text_model.embeddings": "text_model.embeddings",
|
||||
"transformer.text_model.encoder.layers.0.layer_norm1": "text_model.encoder.layers.0.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.0.self_attn.q_proj": "text_model.encoder.layers.0.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.0.self_attn.k_proj": "text_model.encoder.layers.0.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.0.self_attn.v_proj": "text_model.encoder.layers.0.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.0.self_attn.out_proj": "text_model.encoder.layers.0.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.0.layer_norm2": "text_model.encoder.layers.0.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.0.mlp.fc1": "text_model.encoder.layers.0.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.0.mlp.fc2": "text_model.encoder.layers.0.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.1.layer_norm1": "text_model.encoder.layers.1.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.1.self_attn.q_proj": "text_model.encoder.layers.1.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.1.self_attn.k_proj": "text_model.encoder.layers.1.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.1.self_attn.v_proj": "text_model.encoder.layers.1.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.1.self_attn.out_proj": "text_model.encoder.layers.1.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.1.layer_norm2": "text_model.encoder.layers.1.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.1.mlp.fc1": "text_model.encoder.layers.1.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.1.mlp.fc2": "text_model.encoder.layers.1.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.2.layer_norm1": "text_model.encoder.layers.2.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.2.self_attn.q_proj": "text_model.encoder.layers.2.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.2.self_attn.k_proj": "text_model.encoder.layers.2.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.2.self_attn.v_proj": "text_model.encoder.layers.2.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.2.self_attn.out_proj": "text_model.encoder.layers.2.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.2.layer_norm2": "text_model.encoder.layers.2.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.2.mlp.fc1": "text_model.encoder.layers.2.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.2.mlp.fc2": "text_model.encoder.layers.2.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.3.layer_norm1": "text_model.encoder.layers.3.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.3.self_attn.q_proj": "text_model.encoder.layers.3.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.3.self_attn.k_proj": "text_model.encoder.layers.3.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.3.self_attn.v_proj": "text_model.encoder.layers.3.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.3.self_attn.out_proj": "text_model.encoder.layers.3.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.3.layer_norm2": "text_model.encoder.layers.3.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.3.mlp.fc1": "text_model.encoder.layers.3.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.3.mlp.fc2": "text_model.encoder.layers.3.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.4.layer_norm1": "text_model.encoder.layers.4.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.4.self_attn.q_proj": "text_model.encoder.layers.4.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.4.self_attn.k_proj": "text_model.encoder.layers.4.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.4.self_attn.v_proj": "text_model.encoder.layers.4.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.4.self_attn.out_proj": "text_model.encoder.layers.4.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.4.layer_norm2": "text_model.encoder.layers.4.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.4.mlp.fc1": "text_model.encoder.layers.4.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.4.mlp.fc2": "text_model.encoder.layers.4.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.5.layer_norm1": "text_model.encoder.layers.5.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.5.self_attn.q_proj": "text_model.encoder.layers.5.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.5.self_attn.k_proj": "text_model.encoder.layers.5.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.5.self_attn.v_proj": "text_model.encoder.layers.5.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.5.self_attn.out_proj": "text_model.encoder.layers.5.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.5.layer_norm2": "text_model.encoder.layers.5.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.5.mlp.fc1": "text_model.encoder.layers.5.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.5.mlp.fc2": "text_model.encoder.layers.5.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.6.layer_norm1": "text_model.encoder.layers.6.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.6.self_attn.q_proj": "text_model.encoder.layers.6.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.6.self_attn.k_proj": "text_model.encoder.layers.6.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.6.self_attn.v_proj": "text_model.encoder.layers.6.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.6.self_attn.out_proj": "text_model.encoder.layers.6.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.6.layer_norm2": "text_model.encoder.layers.6.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.6.mlp.fc1": "text_model.encoder.layers.6.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.6.mlp.fc2": "text_model.encoder.layers.6.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.7.layer_norm1": "text_model.encoder.layers.7.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.7.self_attn.q_proj": "text_model.encoder.layers.7.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.7.self_attn.k_proj": "text_model.encoder.layers.7.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.7.self_attn.v_proj": "text_model.encoder.layers.7.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.7.self_attn.out_proj": "text_model.encoder.layers.7.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.7.layer_norm2": "text_model.encoder.layers.7.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.7.mlp.fc1": "text_model.encoder.layers.7.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.7.mlp.fc2": "text_model.encoder.layers.7.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.8.layer_norm1": "text_model.encoder.layers.8.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.8.self_attn.q_proj": "text_model.encoder.layers.8.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.8.self_attn.k_proj": "text_model.encoder.layers.8.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.8.self_attn.v_proj": "text_model.encoder.layers.8.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.8.self_attn.out_proj": "text_model.encoder.layers.8.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.8.layer_norm2": "text_model.encoder.layers.8.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.8.mlp.fc1": "text_model.encoder.layers.8.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.8.mlp.fc2": "text_model.encoder.layers.8.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.9.layer_norm1": "text_model.encoder.layers.9.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.9.self_attn.q_proj": "text_model.encoder.layers.9.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.9.self_attn.k_proj": "text_model.encoder.layers.9.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.9.self_attn.v_proj": "text_model.encoder.layers.9.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.9.self_attn.out_proj": "text_model.encoder.layers.9.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.9.layer_norm2": "text_model.encoder.layers.9.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.9.mlp.fc1": "text_model.encoder.layers.9.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.9.mlp.fc2": "text_model.encoder.layers.9.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.10.layer_norm1": "text_model.encoder.layers.10.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.10.self_attn.q_proj": "text_model.encoder.layers.10.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.10.self_attn.k_proj": "text_model.encoder.layers.10.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.10.self_attn.v_proj": "text_model.encoder.layers.10.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.10.self_attn.out_proj": "text_model.encoder.layers.10.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.10.layer_norm2": "text_model.encoder.layers.10.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.10.mlp.fc1": "text_model.encoder.layers.10.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.10.mlp.fc2": "text_model.encoder.layers.10.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.11.layer_norm1": "text_model.encoder.layers.11.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.11.self_attn.q_proj": "text_model.encoder.layers.11.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.11.self_attn.k_proj": "text_model.encoder.layers.11.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.11.self_attn.v_proj": "text_model.encoder.layers.11.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.11.self_attn.out_proj": "text_model.encoder.layers.11.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.11.layer_norm2": "text_model.encoder.layers.11.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.11.mlp.fc1": "text_model.encoder.layers.11.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.11.mlp.fc2": "text_model.encoder.layers.11.mlp.fc2",
|
||||
"transformer.text_model.final_layer_norm": "text_model.final_layer_norm"
|
||||
},
|
||||
"source_aliases": {},
|
||||
"ignorable_prefixes": []
|
||||
}
|
@ -0,0 +1,106 @@
|
||||
{
|
||||
"mapping": {
|
||||
"text_model.embeddings.token_embedding": "transformer.text_model.embeddings.token_embedding",
|
||||
"text_model.embeddings.position_embedding": "transformer.text_model.embeddings.position_embedding",
|
||||
"text_model.embeddings": "transformer.text_model.embeddings",
|
||||
"text_model.encoder.layers.0.layer_norm1": "transformer.text_model.encoder.layers.0.layer_norm1",
|
||||
"text_model.encoder.layers.0.self_attn.q_proj": "transformer.text_model.encoder.layers.0.self_attn.q_proj",
|
||||
"text_model.encoder.layers.0.self_attn.k_proj": "transformer.text_model.encoder.layers.0.self_attn.k_proj",
|
||||
"text_model.encoder.layers.0.self_attn.v_proj": "transformer.text_model.encoder.layers.0.self_attn.v_proj",
|
||||
"text_model.encoder.layers.0.self_attn.out_proj": "transformer.text_model.encoder.layers.0.self_attn.out_proj",
|
||||
"text_model.encoder.layers.0.layer_norm2": "transformer.text_model.encoder.layers.0.layer_norm2",
|
||||
"text_model.encoder.layers.0.mlp.fc1": "transformer.text_model.encoder.layers.0.mlp.fc1",
|
||||
"text_model.encoder.layers.0.mlp.fc2": "transformer.text_model.encoder.layers.0.mlp.fc2",
|
||||
"text_model.encoder.layers.1.layer_norm1": "transformer.text_model.encoder.layers.1.layer_norm1",
|
||||
"text_model.encoder.layers.1.self_attn.q_proj": "transformer.text_model.encoder.layers.1.self_attn.q_proj",
|
||||
"text_model.encoder.layers.1.self_attn.k_proj": "transformer.text_model.encoder.layers.1.self_attn.k_proj",
|
||||
"text_model.encoder.layers.1.self_attn.v_proj": "transformer.text_model.encoder.layers.1.self_attn.v_proj",
|
||||
"text_model.encoder.layers.1.self_attn.out_proj": "transformer.text_model.encoder.layers.1.self_attn.out_proj",
|
||||
"text_model.encoder.layers.1.layer_norm2": "transformer.text_model.encoder.layers.1.layer_norm2",
|
||||
"text_model.encoder.layers.1.mlp.fc1": "transformer.text_model.encoder.layers.1.mlp.fc1",
|
||||
"text_model.encoder.layers.1.mlp.fc2": "transformer.text_model.encoder.layers.1.mlp.fc2",
|
||||
"text_model.encoder.layers.2.layer_norm1": "transformer.text_model.encoder.layers.2.layer_norm1",
|
||||
"text_model.encoder.layers.2.self_attn.q_proj": "transformer.text_model.encoder.layers.2.self_attn.q_proj",
|
||||
"text_model.encoder.layers.2.self_attn.k_proj": "transformer.text_model.encoder.layers.2.self_attn.k_proj",
|
||||
"text_model.encoder.layers.2.self_attn.v_proj": "transformer.text_model.encoder.layers.2.self_attn.v_proj",
|
||||
"text_model.encoder.layers.2.self_attn.out_proj": "transformer.text_model.encoder.layers.2.self_attn.out_proj",
|
||||
"text_model.encoder.layers.2.layer_norm2": "transformer.text_model.encoder.layers.2.layer_norm2",
|
||||
"text_model.encoder.layers.2.mlp.fc1": "transformer.text_model.encoder.layers.2.mlp.fc1",
|
||||
"text_model.encoder.layers.2.mlp.fc2": "transformer.text_model.encoder.layers.2.mlp.fc2",
|
||||
"text_model.encoder.layers.3.layer_norm1": "transformer.text_model.encoder.layers.3.layer_norm1",
|
||||
"text_model.encoder.layers.3.self_attn.q_proj": "transformer.text_model.encoder.layers.3.self_attn.q_proj",
|
||||
"text_model.encoder.layers.3.self_attn.k_proj": "transformer.text_model.encoder.layers.3.self_attn.k_proj",
|
||||
"text_model.encoder.layers.3.self_attn.v_proj": "transformer.text_model.encoder.layers.3.self_attn.v_proj",
|
||||
"text_model.encoder.layers.3.self_attn.out_proj": "transformer.text_model.encoder.layers.3.self_attn.out_proj",
|
||||
"text_model.encoder.layers.3.layer_norm2": "transformer.text_model.encoder.layers.3.layer_norm2",
|
||||
"text_model.encoder.layers.3.mlp.fc1": "transformer.text_model.encoder.layers.3.mlp.fc1",
|
||||
"text_model.encoder.layers.3.mlp.fc2": "transformer.text_model.encoder.layers.3.mlp.fc2",
|
||||
"text_model.encoder.layers.4.layer_norm1": "transformer.text_model.encoder.layers.4.layer_norm1",
|
||||
"text_model.encoder.layers.4.self_attn.q_proj": "transformer.text_model.encoder.layers.4.self_attn.q_proj",
|
||||
"text_model.encoder.layers.4.self_attn.k_proj": "transformer.text_model.encoder.layers.4.self_attn.k_proj",
|
||||
"text_model.encoder.layers.4.self_attn.v_proj": "transformer.text_model.encoder.layers.4.self_attn.v_proj",
|
||||
"text_model.encoder.layers.4.self_attn.out_proj": "transformer.text_model.encoder.layers.4.self_attn.out_proj",
|
||||
"text_model.encoder.layers.4.layer_norm2": "transformer.text_model.encoder.layers.4.layer_norm2",
|
||||
"text_model.encoder.layers.4.mlp.fc1": "transformer.text_model.encoder.layers.4.mlp.fc1",
|
||||
"text_model.encoder.layers.4.mlp.fc2": "transformer.text_model.encoder.layers.4.mlp.fc2",
|
||||
"text_model.encoder.layers.5.layer_norm1": "transformer.text_model.encoder.layers.5.layer_norm1",
|
||||
"text_model.encoder.layers.5.self_attn.q_proj": "transformer.text_model.encoder.layers.5.self_attn.q_proj",
|
||||
"text_model.encoder.layers.5.self_attn.k_proj": "transformer.text_model.encoder.layers.5.self_attn.k_proj",
|
||||
"text_model.encoder.layers.5.self_attn.v_proj": "transformer.text_model.encoder.layers.5.self_attn.v_proj",
|
||||
"text_model.encoder.layers.5.self_attn.out_proj": "transformer.text_model.encoder.layers.5.self_attn.out_proj",
|
||||
"text_model.encoder.layers.5.layer_norm2": "transformer.text_model.encoder.layers.5.layer_norm2",
|
||||
"text_model.encoder.layers.5.mlp.fc1": "transformer.text_model.encoder.layers.5.mlp.fc1",
|
||||
"text_model.encoder.layers.5.mlp.fc2": "transformer.text_model.encoder.layers.5.mlp.fc2",
|
||||
"text_model.encoder.layers.6.layer_norm1": "transformer.text_model.encoder.layers.6.layer_norm1",
|
||||
"text_model.encoder.layers.6.self_attn.q_proj": "transformer.text_model.encoder.layers.6.self_attn.q_proj",
|
||||
"text_model.encoder.layers.6.self_attn.k_proj": "transformer.text_model.encoder.layers.6.self_attn.k_proj",
|
||||
"text_model.encoder.layers.6.self_attn.v_proj": "transformer.text_model.encoder.layers.6.self_attn.v_proj",
|
||||
"text_model.encoder.layers.6.self_attn.out_proj": "transformer.text_model.encoder.layers.6.self_attn.out_proj",
|
||||
"text_model.encoder.layers.6.layer_norm2": "transformer.text_model.encoder.layers.6.layer_norm2",
|
||||
"text_model.encoder.layers.6.mlp.fc1": "transformer.text_model.encoder.layers.6.mlp.fc1",
|
||||
"text_model.encoder.layers.6.mlp.fc2": "transformer.text_model.encoder.layers.6.mlp.fc2",
|
||||
"text_model.encoder.layers.7.layer_norm1": "transformer.text_model.encoder.layers.7.layer_norm1",
|
||||
"text_model.encoder.layers.7.self_attn.q_proj": "transformer.text_model.encoder.layers.7.self_attn.q_proj",
|
||||
"text_model.encoder.layers.7.self_attn.k_proj": "transformer.text_model.encoder.layers.7.self_attn.k_proj",
|
||||
"text_model.encoder.layers.7.self_attn.v_proj": "transformer.text_model.encoder.layers.7.self_attn.v_proj",
|
||||
"text_model.encoder.layers.7.self_attn.out_proj": "transformer.text_model.encoder.layers.7.self_attn.out_proj",
|
||||
"text_model.encoder.layers.7.layer_norm2": "transformer.text_model.encoder.layers.7.layer_norm2",
|
||||
"text_model.encoder.layers.7.mlp.fc1": "transformer.text_model.encoder.layers.7.mlp.fc1",
|
||||
"text_model.encoder.layers.7.mlp.fc2": "transformer.text_model.encoder.layers.7.mlp.fc2",
|
||||
"text_model.encoder.layers.8.layer_norm1": "transformer.text_model.encoder.layers.8.layer_norm1",
|
||||
"text_model.encoder.layers.8.self_attn.q_proj": "transformer.text_model.encoder.layers.8.self_attn.q_proj",
|
||||
"text_model.encoder.layers.8.self_attn.k_proj": "transformer.text_model.encoder.layers.8.self_attn.k_proj",
|
||||
"text_model.encoder.layers.8.self_attn.v_proj": "transformer.text_model.encoder.layers.8.self_attn.v_proj",
|
||||
"text_model.encoder.layers.8.self_attn.out_proj": "transformer.text_model.encoder.layers.8.self_attn.out_proj",
|
||||
"text_model.encoder.layers.8.layer_norm2": "transformer.text_model.encoder.layers.8.layer_norm2",
|
||||
"text_model.encoder.layers.8.mlp.fc1": "transformer.text_model.encoder.layers.8.mlp.fc1",
|
||||
"text_model.encoder.layers.8.mlp.fc2": "transformer.text_model.encoder.layers.8.mlp.fc2",
|
||||
"text_model.encoder.layers.9.layer_norm1": "transformer.text_model.encoder.layers.9.layer_norm1",
|
||||
"text_model.encoder.layers.9.self_attn.q_proj": "transformer.text_model.encoder.layers.9.self_attn.q_proj",
|
||||
"text_model.encoder.layers.9.self_attn.k_proj": "transformer.text_model.encoder.layers.9.self_attn.k_proj",
|
||||
"text_model.encoder.layers.9.self_attn.v_proj": "transformer.text_model.encoder.layers.9.self_attn.v_proj",
|
||||
"text_model.encoder.layers.9.self_attn.out_proj": "transformer.text_model.encoder.layers.9.self_attn.out_proj",
|
||||
"text_model.encoder.layers.9.layer_norm2": "transformer.text_model.encoder.layers.9.layer_norm2",
|
||||
"text_model.encoder.layers.9.mlp.fc1": "transformer.text_model.encoder.layers.9.mlp.fc1",
|
||||
"text_model.encoder.layers.9.mlp.fc2": "transformer.text_model.encoder.layers.9.mlp.fc2",
|
||||
"text_model.encoder.layers.10.layer_norm1": "transformer.text_model.encoder.layers.10.layer_norm1",
|
||||
"text_model.encoder.layers.10.self_attn.q_proj": "transformer.text_model.encoder.layers.10.self_attn.q_proj",
|
||||
"text_model.encoder.layers.10.self_attn.k_proj": "transformer.text_model.encoder.layers.10.self_attn.k_proj",
|
||||
"text_model.encoder.layers.10.self_attn.v_proj": "transformer.text_model.encoder.layers.10.self_attn.v_proj",
|
||||
"text_model.encoder.layers.10.self_attn.out_proj": "transformer.text_model.encoder.layers.10.self_attn.out_proj",
|
||||
"text_model.encoder.layers.10.layer_norm2": "transformer.text_model.encoder.layers.10.layer_norm2",
|
||||
"text_model.encoder.layers.10.mlp.fc1": "transformer.text_model.encoder.layers.10.mlp.fc1",
|
||||
"text_model.encoder.layers.10.mlp.fc2": "transformer.text_model.encoder.layers.10.mlp.fc2",
|
||||
"text_model.encoder.layers.11.layer_norm1": "transformer.text_model.encoder.layers.11.layer_norm1",
|
||||
"text_model.encoder.layers.11.self_attn.q_proj": "transformer.text_model.encoder.layers.11.self_attn.q_proj",
|
||||
"text_model.encoder.layers.11.self_attn.k_proj": "transformer.text_model.encoder.layers.11.self_attn.k_proj",
|
||||
"text_model.encoder.layers.11.self_attn.v_proj": "transformer.text_model.encoder.layers.11.self_attn.v_proj",
|
||||
"text_model.encoder.layers.11.self_attn.out_proj": "transformer.text_model.encoder.layers.11.self_attn.out_proj",
|
||||
"text_model.encoder.layers.11.layer_norm2": "transformer.text_model.encoder.layers.11.layer_norm2",
|
||||
"text_model.encoder.layers.11.mlp.fc1": "transformer.text_model.encoder.layers.11.mlp.fc1",
|
||||
"text_model.encoder.layers.11.mlp.fc2": "transformer.text_model.encoder.layers.11.mlp.fc2",
|
||||
"text_model.final_layer_norm": "transformer.text_model.final_layer_norm"
|
||||
},
|
||||
"source_aliases": {},
|
||||
"ignorable_prefixes": []
|
||||
}
|
@ -0,0 +1,107 @@
|
||||
{
|
||||
"ignorable_prefixes": [
|
||||
"text_model.embeddings"
|
||||
],
|
||||
"mapping": {
|
||||
"text_model.embeddings.token_embedding": "Sum.TokenEncoder",
|
||||
"text_model.embeddings.position_embedding": "Sum.PositionalEncoder.Embedding",
|
||||
"text_model.encoder.layers.0.layer_norm1": "TransformerLayer_1.Residual_1.LayerNorm",
|
||||
"text_model.encoder.layers.0.layer_norm2": "TransformerLayer_1.Residual_2.LayerNorm",
|
||||
"text_model.encoder.layers.1.layer_norm1": "TransformerLayer_2.Residual_1.LayerNorm",
|
||||
"text_model.encoder.layers.1.layer_norm2": "TransformerLayer_2.Residual_2.LayerNorm",
|
||||
"text_model.encoder.layers.2.layer_norm1": "TransformerLayer_3.Residual_1.LayerNorm",
|
||||
"text_model.encoder.layers.2.layer_norm2": "TransformerLayer_3.Residual_2.LayerNorm",
|
||||
"text_model.encoder.layers.3.layer_norm1": "TransformerLayer_4.Residual_1.LayerNorm",
|
||||
"text_model.encoder.layers.3.layer_norm2": "TransformerLayer_4.Residual_2.LayerNorm",
|
||||
"text_model.encoder.layers.4.layer_norm1": "TransformerLayer_5.Residual_1.LayerNorm",
|
||||
"text_model.encoder.layers.4.layer_norm2": "TransformerLayer_5.Residual_2.LayerNorm",
|
||||
"text_model.encoder.layers.5.layer_norm1": "TransformerLayer_6.Residual_1.LayerNorm",
|
||||
"text_model.encoder.layers.5.layer_norm2": "TransformerLayer_6.Residual_2.LayerNorm",
|
||||
"text_model.encoder.layers.6.layer_norm1": "TransformerLayer_7.Residual_1.LayerNorm",
|
||||
"text_model.encoder.layers.6.layer_norm2": "TransformerLayer_7.Residual_2.LayerNorm",
|
||||
"text_model.encoder.layers.7.layer_norm1": "TransformerLayer_8.Residual_1.LayerNorm",
|
||||
"text_model.encoder.layers.7.layer_norm2": "TransformerLayer_8.Residual_2.LayerNorm",
|
||||
"text_model.encoder.layers.8.layer_norm1": "TransformerLayer_9.Residual_1.LayerNorm",
|
||||
"text_model.encoder.layers.8.layer_norm2": "TransformerLayer_9.Residual_2.LayerNorm",
|
||||
"text_model.encoder.layers.9.layer_norm1": "TransformerLayer_10.Residual_1.LayerNorm",
|
||||
"text_model.encoder.layers.9.layer_norm2": "TransformerLayer_10.Residual_2.LayerNorm",
|
||||
"text_model.encoder.layers.10.layer_norm1": "TransformerLayer_11.Residual_1.LayerNorm",
|
||||
"text_model.encoder.layers.10.layer_norm2": "TransformerLayer_11.Residual_2.LayerNorm",
|
||||
"text_model.encoder.layers.11.layer_norm1": "TransformerLayer_12.Residual_1.LayerNorm",
|
||||
"text_model.encoder.layers.11.layer_norm2": "TransformerLayer_12.Residual_2.LayerNorm",
|
||||
"text_model.final_layer_norm": "LayerNorm",
|
||||
"text_model.encoder.layers.0.self_attn.q_proj": "TransformerLayer_1.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"text_model.encoder.layers.0.self_attn.k_proj": "TransformerLayer_1.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"text_model.encoder.layers.0.self_attn.v_proj": "TransformerLayer_1.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"text_model.encoder.layers.0.self_attn.out_proj": "TransformerLayer_1.Residual_1.SelfAttention.Linear",
|
||||
"text_model.encoder.layers.1.self_attn.q_proj": "TransformerLayer_2.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"text_model.encoder.layers.1.self_attn.k_proj": "TransformerLayer_2.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"text_model.encoder.layers.1.self_attn.v_proj": "TransformerLayer_2.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"text_model.encoder.layers.1.self_attn.out_proj": "TransformerLayer_2.Residual_1.SelfAttention.Linear",
|
||||
"text_model.encoder.layers.2.self_attn.q_proj": "TransformerLayer_3.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"text_model.encoder.layers.2.self_attn.k_proj": "TransformerLayer_3.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"text_model.encoder.layers.2.self_attn.v_proj": "TransformerLayer_3.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"text_model.encoder.layers.2.self_attn.out_proj": "TransformerLayer_3.Residual_1.SelfAttention.Linear",
|
||||
"text_model.encoder.layers.3.self_attn.q_proj": "TransformerLayer_4.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"text_model.encoder.layers.3.self_attn.k_proj": "TransformerLayer_4.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"text_model.encoder.layers.3.self_attn.v_proj": "TransformerLayer_4.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"text_model.encoder.layers.3.self_attn.out_proj": "TransformerLayer_4.Residual_1.SelfAttention.Linear",
|
||||
"text_model.encoder.layers.4.self_attn.q_proj": "TransformerLayer_5.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"text_model.encoder.layers.4.self_attn.k_proj": "TransformerLayer_5.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"text_model.encoder.layers.4.self_attn.v_proj": "TransformerLayer_5.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"text_model.encoder.layers.4.self_attn.out_proj": "TransformerLayer_5.Residual_1.SelfAttention.Linear",
|
||||
"text_model.encoder.layers.5.self_attn.q_proj": "TransformerLayer_6.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"text_model.encoder.layers.5.self_attn.k_proj": "TransformerLayer_6.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"text_model.encoder.layers.5.self_attn.v_proj": "TransformerLayer_6.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"text_model.encoder.layers.5.self_attn.out_proj": "TransformerLayer_6.Residual_1.SelfAttention.Linear",
|
||||
"text_model.encoder.layers.6.self_attn.q_proj": "TransformerLayer_7.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"text_model.encoder.layers.6.self_attn.k_proj": "TransformerLayer_7.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"text_model.encoder.layers.6.self_attn.v_proj": "TransformerLayer_7.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"text_model.encoder.layers.6.self_attn.out_proj": "TransformerLayer_7.Residual_1.SelfAttention.Linear",
|
||||
"text_model.encoder.layers.7.self_attn.q_proj": "TransformerLayer_8.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"text_model.encoder.layers.7.self_attn.k_proj": "TransformerLayer_8.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"text_model.encoder.layers.7.self_attn.v_proj": "TransformerLayer_8.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"text_model.encoder.layers.7.self_attn.out_proj": "TransformerLayer_8.Residual_1.SelfAttention.Linear",
|
||||
"text_model.encoder.layers.8.self_attn.q_proj": "TransformerLayer_9.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"text_model.encoder.layers.8.self_attn.k_proj": "TransformerLayer_9.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"text_model.encoder.layers.8.self_attn.v_proj": "TransformerLayer_9.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"text_model.encoder.layers.8.self_attn.out_proj": "TransformerLayer_9.Residual_1.SelfAttention.Linear",
|
||||
"text_model.encoder.layers.9.self_attn.q_proj": "TransformerLayer_10.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"text_model.encoder.layers.9.self_attn.k_proj": "TransformerLayer_10.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"text_model.encoder.layers.9.self_attn.v_proj": "TransformerLayer_10.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"text_model.encoder.layers.9.self_attn.out_proj": "TransformerLayer_10.Residual_1.SelfAttention.Linear",
|
||||
"text_model.encoder.layers.10.self_attn.q_proj": "TransformerLayer_11.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"text_model.encoder.layers.10.self_attn.k_proj": "TransformerLayer_11.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"text_model.encoder.layers.10.self_attn.v_proj": "TransformerLayer_11.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"text_model.encoder.layers.10.self_attn.out_proj": "TransformerLayer_11.Residual_1.SelfAttention.Linear",
|
||||
"text_model.encoder.layers.11.self_attn.q_proj": "TransformerLayer_12.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"text_model.encoder.layers.11.self_attn.k_proj": "TransformerLayer_12.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"text_model.encoder.layers.11.self_attn.v_proj": "TransformerLayer_12.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"text_model.encoder.layers.11.self_attn.out_proj": "TransformerLayer_12.Residual_1.SelfAttention.Linear",
|
||||
"text_model.encoder.layers.0.mlp.fc1": "TransformerLayer_1.Residual_2.FeedForward.Linear_1",
|
||||
"text_model.encoder.layers.1.mlp.fc1": "TransformerLayer_2.Residual_2.FeedForward.Linear_1",
|
||||
"text_model.encoder.layers.2.mlp.fc1": "TransformerLayer_3.Residual_2.FeedForward.Linear_1",
|
||||
"text_model.encoder.layers.3.mlp.fc1": "TransformerLayer_4.Residual_2.FeedForward.Linear_1",
|
||||
"text_model.encoder.layers.4.mlp.fc1": "TransformerLayer_5.Residual_2.FeedForward.Linear_1",
|
||||
"text_model.encoder.layers.5.mlp.fc1": "TransformerLayer_6.Residual_2.FeedForward.Linear_1",
|
||||
"text_model.encoder.layers.6.mlp.fc1": "TransformerLayer_7.Residual_2.FeedForward.Linear_1",
|
||||
"text_model.encoder.layers.7.mlp.fc1": "TransformerLayer_8.Residual_2.FeedForward.Linear_1",
|
||||
"text_model.encoder.layers.8.mlp.fc1": "TransformerLayer_9.Residual_2.FeedForward.Linear_1",
|
||||
"text_model.encoder.layers.9.mlp.fc1": "TransformerLayer_10.Residual_2.FeedForward.Linear_1",
|
||||
"text_model.encoder.layers.10.mlp.fc1": "TransformerLayer_11.Residual_2.FeedForward.Linear_1",
|
||||
"text_model.encoder.layers.11.mlp.fc1": "TransformerLayer_12.Residual_2.FeedForward.Linear_1",
|
||||
"text_model.encoder.layers.0.mlp.fc2": "TransformerLayer_1.Residual_2.FeedForward.Linear_2",
|
||||
"text_model.encoder.layers.1.mlp.fc2": "TransformerLayer_2.Residual_2.FeedForward.Linear_2",
|
||||
"text_model.encoder.layers.2.mlp.fc2": "TransformerLayer_3.Residual_2.FeedForward.Linear_2",
|
||||
"text_model.encoder.layers.3.mlp.fc2": "TransformerLayer_4.Residual_2.FeedForward.Linear_2",
|
||||
"text_model.encoder.layers.4.mlp.fc2": "TransformerLayer_5.Residual_2.FeedForward.Linear_2",
|
||||
"text_model.encoder.layers.5.mlp.fc2": "TransformerLayer_6.Residual_2.FeedForward.Linear_2",
|
||||
"text_model.encoder.layers.6.mlp.fc2": "TransformerLayer_7.Residual_2.FeedForward.Linear_2",
|
||||
"text_model.encoder.layers.7.mlp.fc2": "TransformerLayer_8.Residual_2.FeedForward.Linear_2",
|
||||
"text_model.encoder.layers.8.mlp.fc2": "TransformerLayer_9.Residual_2.FeedForward.Linear_2",
|
||||
"text_model.encoder.layers.9.mlp.fc2": "TransformerLayer_10.Residual_2.FeedForward.Linear_2",
|
||||
"text_model.encoder.layers.10.mlp.fc2": "TransformerLayer_11.Residual_2.FeedForward.Linear_2",
|
||||
"text_model.encoder.layers.11.mlp.fc2": "TransformerLayer_12.Residual_2.FeedForward.Linear_2"
|
||||
},
|
||||
"source_aliases": {}
|
||||
}
|
@ -0,0 +1,397 @@
|
||||
{
|
||||
"mapping": {
|
||||
"diffusion_model.time_embed.0": "time_embedding.linear_1",
|
||||
"diffusion_model.time_embed.2": "time_embedding.linear_2",
|
||||
"diffusion_model.input_blocks.0.0": "conv_in",
|
||||
"diffusion_model.input_blocks.1.0.in_layers.0": "down_blocks.0.resnets.0.norm1",
|
||||
"diffusion_model.input_blocks.1.0.in_layers.2": "down_blocks.0.resnets.0.conv1",
|
||||
"diffusion_model.input_blocks.1.0.emb_layers.1": "down_blocks.0.resnets.0.time_emb_proj",
|
||||
"diffusion_model.input_blocks.1.0.out_layers.0": "down_blocks.0.resnets.0.norm2",
|
||||
"diffusion_model.input_blocks.1.0.out_layers.3": "down_blocks.0.resnets.0.conv2",
|
||||
"diffusion_model.input_blocks.1.1.norm": "down_blocks.0.attentions.0.norm",
|
||||
"diffusion_model.input_blocks.1.1.proj_in": "down_blocks.0.attentions.0.proj_in",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1": "down_blocks.0.attentions.0.transformer_blocks.0.norm1",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q": "down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k": "down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v": "down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0": "down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2": "down_blocks.0.attentions.0.transformer_blocks.0.norm2",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q": "down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k": "down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v": "down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0": "down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3": "down_blocks.0.attentions.0.transformer_blocks.0.norm3",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj": "down_blocks.0.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2": "down_blocks.0.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.input_blocks.1.1.proj_out": "down_blocks.0.attentions.0.proj_out",
|
||||
"diffusion_model.input_blocks.2.0.in_layers.0": "down_blocks.0.resnets.1.norm1",
|
||||
"diffusion_model.input_blocks.2.0.in_layers.2": "down_blocks.0.resnets.1.conv1",
|
||||
"diffusion_model.input_blocks.2.0.emb_layers.1": "down_blocks.0.resnets.1.time_emb_proj",
|
||||
"diffusion_model.input_blocks.2.0.out_layers.0": "down_blocks.0.resnets.1.norm2",
|
||||
"diffusion_model.input_blocks.2.0.out_layers.3": "down_blocks.0.resnets.1.conv2",
|
||||
"diffusion_model.input_blocks.2.1.norm": "down_blocks.0.attentions.1.norm",
|
||||
"diffusion_model.input_blocks.2.1.proj_in": "down_blocks.0.attentions.1.proj_in",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1": "down_blocks.0.attentions.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q": "down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k": "down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v": "down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0": "down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2": "down_blocks.0.attentions.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q": "down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k": "down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v": "down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0": "down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3": "down_blocks.0.attentions.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj": "down_blocks.0.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2": "down_blocks.0.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.input_blocks.2.1.proj_out": "down_blocks.0.attentions.1.proj_out",
|
||||
"diffusion_model.input_blocks.3.0.op": "down_blocks.0.downsamplers.0.conv",
|
||||
"diffusion_model.input_blocks.4.0.in_layers.0": "down_blocks.1.resnets.0.norm1",
|
||||
"diffusion_model.input_blocks.4.0.in_layers.2": "down_blocks.1.resnets.0.conv1",
|
||||
"diffusion_model.input_blocks.4.0.emb_layers.1": "down_blocks.1.resnets.0.time_emb_proj",
|
||||
"diffusion_model.input_blocks.4.0.out_layers.0": "down_blocks.1.resnets.0.norm2",
|
||||
"diffusion_model.input_blocks.4.0.out_layers.3": "down_blocks.1.resnets.0.conv2",
|
||||
"diffusion_model.input_blocks.4.0.skip_connection": "down_blocks.1.resnets.0.conv_shortcut",
|
||||
"diffusion_model.input_blocks.4.1.norm": "down_blocks.1.attentions.0.norm",
|
||||
"diffusion_model.input_blocks.4.1.proj_in": "down_blocks.1.attentions.0.proj_in",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1": "down_blocks.1.attentions.0.transformer_blocks.0.norm1",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q": "down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k": "down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v": "down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0": "down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2": "down_blocks.1.attentions.0.transformer_blocks.0.norm2",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q": "down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k": "down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v": "down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0": "down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3": "down_blocks.1.attentions.0.transformer_blocks.0.norm3",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj": "down_blocks.1.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2": "down_blocks.1.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.input_blocks.4.1.proj_out": "down_blocks.1.attentions.0.proj_out",
|
||||
"diffusion_model.input_blocks.5.0.in_layers.0": "down_blocks.1.resnets.1.norm1",
|
||||
"diffusion_model.input_blocks.5.0.in_layers.2": "down_blocks.1.resnets.1.conv1",
|
||||
"diffusion_model.input_blocks.5.0.emb_layers.1": "down_blocks.1.resnets.1.time_emb_proj",
|
||||
"diffusion_model.input_blocks.5.0.out_layers.0": "down_blocks.1.resnets.1.norm2",
|
||||
"diffusion_model.input_blocks.5.0.out_layers.3": "down_blocks.1.resnets.1.conv2",
|
||||
"diffusion_model.input_blocks.5.1.norm": "down_blocks.1.attentions.1.norm",
|
||||
"diffusion_model.input_blocks.5.1.proj_in": "down_blocks.1.attentions.1.proj_in",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1": "down_blocks.1.attentions.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q": "down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k": "down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v": "down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0": "down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2": "down_blocks.1.attentions.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q": "down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k": "down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v": "down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0": "down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3": "down_blocks.1.attentions.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj": "down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2": "down_blocks.1.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.input_blocks.5.1.proj_out": "down_blocks.1.attentions.1.proj_out",
|
||||
"diffusion_model.input_blocks.6.0.op": "down_blocks.1.downsamplers.0.conv",
|
||||
"diffusion_model.input_blocks.7.0.in_layers.0": "down_blocks.2.resnets.0.norm1",
|
||||
"diffusion_model.input_blocks.7.0.in_layers.2": "down_blocks.2.resnets.0.conv1",
|
||||
"diffusion_model.input_blocks.7.0.emb_layers.1": "down_blocks.2.resnets.0.time_emb_proj",
|
||||
"diffusion_model.input_blocks.7.0.out_layers.0": "down_blocks.2.resnets.0.norm2",
|
||||
"diffusion_model.input_blocks.7.0.out_layers.3": "down_blocks.2.resnets.0.conv2",
|
||||
"diffusion_model.input_blocks.7.0.skip_connection": "down_blocks.2.resnets.0.conv_shortcut",
|
||||
"diffusion_model.input_blocks.7.1.norm": "down_blocks.2.attentions.0.norm",
|
||||
"diffusion_model.input_blocks.7.1.proj_in": "down_blocks.2.attentions.0.proj_in",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1": "down_blocks.2.attentions.0.transformer_blocks.0.norm1",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q": "down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k": "down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v": "down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0": "down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2": "down_blocks.2.attentions.0.transformer_blocks.0.norm2",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q": "down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k": "down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v": "down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0": "down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3": "down_blocks.2.attentions.0.transformer_blocks.0.norm3",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj": "down_blocks.2.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2": "down_blocks.2.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.input_blocks.7.1.proj_out": "down_blocks.2.attentions.0.proj_out",
|
||||
"diffusion_model.input_blocks.8.0.in_layers.0": "down_blocks.2.resnets.1.norm1",
|
||||
"diffusion_model.input_blocks.8.0.in_layers.2": "down_blocks.2.resnets.1.conv1",
|
||||
"diffusion_model.input_blocks.8.0.emb_layers.1": "down_blocks.2.resnets.1.time_emb_proj",
|
||||
"diffusion_model.input_blocks.8.0.out_layers.0": "down_blocks.2.resnets.1.norm2",
|
||||
"diffusion_model.input_blocks.8.0.out_layers.3": "down_blocks.2.resnets.1.conv2",
|
||||
"diffusion_model.input_blocks.8.1.norm": "down_blocks.2.attentions.1.norm",
|
||||
"diffusion_model.input_blocks.8.1.proj_in": "down_blocks.2.attentions.1.proj_in",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1": "down_blocks.2.attentions.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q": "down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k": "down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v": "down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0": "down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2": "down_blocks.2.attentions.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q": "down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k": "down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v": "down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0": "down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3": "down_blocks.2.attentions.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj": "down_blocks.2.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2": "down_blocks.2.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.input_blocks.8.1.proj_out": "down_blocks.2.attentions.1.proj_out",
|
||||
"diffusion_model.input_blocks.9.0.op": "down_blocks.2.downsamplers.0.conv",
|
||||
"diffusion_model.input_blocks.10.0.in_layers.0": "down_blocks.3.resnets.0.norm1",
|
||||
"diffusion_model.input_blocks.10.0.in_layers.2": "down_blocks.3.resnets.0.conv1",
|
||||
"diffusion_model.input_blocks.10.0.emb_layers.1": "down_blocks.3.resnets.0.time_emb_proj",
|
||||
"diffusion_model.input_blocks.10.0.out_layers.0": "down_blocks.3.resnets.0.norm2",
|
||||
"diffusion_model.input_blocks.10.0.out_layers.3": "down_blocks.3.resnets.0.conv2",
|
||||
"diffusion_model.input_blocks.11.0.in_layers.0": "down_blocks.3.resnets.1.norm1",
|
||||
"diffusion_model.input_blocks.11.0.in_layers.2": "down_blocks.3.resnets.1.conv1",
|
||||
"diffusion_model.input_blocks.11.0.emb_layers.1": "down_blocks.3.resnets.1.time_emb_proj",
|
||||
"diffusion_model.input_blocks.11.0.out_layers.0": "down_blocks.3.resnets.1.norm2",
|
||||
"diffusion_model.input_blocks.11.0.out_layers.3": "down_blocks.3.resnets.1.conv2",
|
||||
"diffusion_model.middle_block.0.in_layers.0": "mid_block.resnets.0.norm1",
|
||||
"diffusion_model.middle_block.0.in_layers.2": "mid_block.resnets.0.conv1",
|
||||
"diffusion_model.middle_block.0.emb_layers.1": "mid_block.resnets.0.time_emb_proj",
|
||||
"diffusion_model.middle_block.0.out_layers.0": "mid_block.resnets.0.norm2",
|
||||
"diffusion_model.middle_block.0.out_layers.3": "mid_block.resnets.0.conv2",
|
||||
"diffusion_model.middle_block.1.norm": "mid_block.attentions.0.norm",
|
||||
"diffusion_model.middle_block.1.proj_in": "mid_block.attentions.0.proj_in",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.norm1": "mid_block.attentions.0.transformer_blocks.0.norm1",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q": "mid_block.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_k": "mid_block.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v": "mid_block.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0": "mid_block.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.norm2": "mid_block.attentions.0.transformer_blocks.0.norm2",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q": "mid_block.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k": "mid_block.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v": "mid_block.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0": "mid_block.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.norm3": "mid_block.attentions.0.transformer_blocks.0.norm3",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj": "mid_block.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2": "mid_block.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.middle_block.1.proj_out": "mid_block.attentions.0.proj_out",
|
||||
"diffusion_model.middle_block.2.in_layers.0": "mid_block.resnets.1.norm1",
|
||||
"diffusion_model.middle_block.2.in_layers.2": "mid_block.resnets.1.conv1",
|
||||
"diffusion_model.middle_block.2.emb_layers.1": "mid_block.resnets.1.time_emb_proj",
|
||||
"diffusion_model.middle_block.2.out_layers.0": "mid_block.resnets.1.norm2",
|
||||
"diffusion_model.middle_block.2.out_layers.3": "mid_block.resnets.1.conv2",
|
||||
"diffusion_model.output_blocks.0.0.in_layers.0": "up_blocks.0.resnets.0.norm1",
|
||||
"diffusion_model.output_blocks.0.0.in_layers.2": "up_blocks.0.resnets.0.conv1",
|
||||
"diffusion_model.output_blocks.0.0.emb_layers.1": "up_blocks.0.resnets.0.time_emb_proj",
|
||||
"diffusion_model.output_blocks.0.0.out_layers.0": "up_blocks.0.resnets.0.norm2",
|
||||
"diffusion_model.output_blocks.0.0.out_layers.3": "up_blocks.0.resnets.0.conv2",
|
||||
"diffusion_model.output_blocks.0.0.skip_connection": "up_blocks.0.resnets.0.conv_shortcut",
|
||||
"diffusion_model.output_blocks.1.0.in_layers.0": "up_blocks.0.resnets.1.norm1",
|
||||
"diffusion_model.output_blocks.1.0.in_layers.2": "up_blocks.0.resnets.1.conv1",
|
||||
"diffusion_model.output_blocks.1.0.emb_layers.1": "up_blocks.0.resnets.1.time_emb_proj",
|
||||
"diffusion_model.output_blocks.1.0.out_layers.0": "up_blocks.0.resnets.1.norm2",
|
||||
"diffusion_model.output_blocks.1.0.out_layers.3": "up_blocks.0.resnets.1.conv2",
|
||||
"diffusion_model.output_blocks.1.0.skip_connection": "up_blocks.0.resnets.1.conv_shortcut",
|
||||
"diffusion_model.output_blocks.2.0.in_layers.0": "up_blocks.0.resnets.2.norm1",
|
||||
"diffusion_model.output_blocks.2.0.in_layers.2": "up_blocks.0.resnets.2.conv1",
|
||||
"diffusion_model.output_blocks.2.0.emb_layers.1": "up_blocks.0.resnets.2.time_emb_proj",
|
||||
"diffusion_model.output_blocks.2.0.out_layers.0": "up_blocks.0.resnets.2.norm2",
|
||||
"diffusion_model.output_blocks.2.0.out_layers.3": "up_blocks.0.resnets.2.conv2",
|
||||
"diffusion_model.output_blocks.2.0.skip_connection": "up_blocks.0.resnets.2.conv_shortcut",
|
||||
"diffusion_model.output_blocks.2.1.conv": "up_blocks.0.upsamplers.0.conv",
|
||||
"diffusion_model.output_blocks.3.0.in_layers.0": "up_blocks.1.resnets.0.norm1",
|
||||
"diffusion_model.output_blocks.3.0.in_layers.2": "up_blocks.1.resnets.0.conv1",
|
||||
"diffusion_model.output_blocks.3.0.emb_layers.1": "up_blocks.1.resnets.0.time_emb_proj",
|
||||
"diffusion_model.output_blocks.3.0.out_layers.0": "up_blocks.1.resnets.0.norm2",
|
||||
"diffusion_model.output_blocks.3.0.out_layers.3": "up_blocks.1.resnets.0.conv2",
|
||||
"diffusion_model.output_blocks.3.0.skip_connection": "up_blocks.1.resnets.0.conv_shortcut",
|
||||
"diffusion_model.output_blocks.3.1.norm": "up_blocks.1.attentions.0.norm",
|
||||
"diffusion_model.output_blocks.3.1.proj_in": "up_blocks.1.attentions.0.proj_in",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1": "up_blocks.1.attentions.0.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_q": "up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_k": "up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_v": "up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0": "up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2": "up_blocks.1.attentions.0.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q": "up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k": "up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v": "up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0": "up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3": "up_blocks.1.attentions.0.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj": "up_blocks.1.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2": "up_blocks.1.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.3.1.proj_out": "up_blocks.1.attentions.0.proj_out",
|
||||
"diffusion_model.output_blocks.4.0.in_layers.0": "up_blocks.1.resnets.1.norm1",
|
||||
"diffusion_model.output_blocks.4.0.in_layers.2": "up_blocks.1.resnets.1.conv1",
|
||||
"diffusion_model.output_blocks.4.0.emb_layers.1": "up_blocks.1.resnets.1.time_emb_proj",
|
||||
"diffusion_model.output_blocks.4.0.out_layers.0": "up_blocks.1.resnets.1.norm2",
|
||||
"diffusion_model.output_blocks.4.0.out_layers.3": "up_blocks.1.resnets.1.conv2",
|
||||
"diffusion_model.output_blocks.4.0.skip_connection": "up_blocks.1.resnets.1.conv_shortcut",
|
||||
"diffusion_model.output_blocks.4.1.norm": "up_blocks.1.attentions.1.norm",
|
||||
"diffusion_model.output_blocks.4.1.proj_in": "up_blocks.1.attentions.1.proj_in",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1": "up_blocks.1.attentions.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_q": "up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_k": "up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_v": "up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0": "up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2": "up_blocks.1.attentions.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q": "up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k": "up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v": "up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0": "up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3": "up_blocks.1.attentions.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj": "up_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2": "up_blocks.1.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.4.1.proj_out": "up_blocks.1.attentions.1.proj_out",
|
||||
"diffusion_model.output_blocks.5.0.in_layers.0": "up_blocks.1.resnets.2.norm1",
|
||||
"diffusion_model.output_blocks.5.0.in_layers.2": "up_blocks.1.resnets.2.conv1",
|
||||
"diffusion_model.output_blocks.5.0.emb_layers.1": "up_blocks.1.resnets.2.time_emb_proj",
|
||||
"diffusion_model.output_blocks.5.0.out_layers.0": "up_blocks.1.resnets.2.norm2",
|
||||
"diffusion_model.output_blocks.5.0.out_layers.3": "up_blocks.1.resnets.2.conv2",
|
||||
"diffusion_model.output_blocks.5.0.skip_connection": "up_blocks.1.resnets.2.conv_shortcut",
|
||||
"diffusion_model.output_blocks.5.1.norm": "up_blocks.1.attentions.2.norm",
|
||||
"diffusion_model.output_blocks.5.1.proj_in": "up_blocks.1.attentions.2.proj_in",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1": "up_blocks.1.attentions.2.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_q": "up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_k": "up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_v": "up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0": "up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2": "up_blocks.1.attentions.2.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q": "up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k": "up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v": "up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0": "up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3": "up_blocks.1.attentions.2.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj": "up_blocks.1.attentions.2.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2": "up_blocks.1.attentions.2.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.5.1.proj_out": "up_blocks.1.attentions.2.proj_out",
|
||||
"diffusion_model.output_blocks.5.2.conv": "up_blocks.1.upsamplers.0.conv",
|
||||
"diffusion_model.output_blocks.6.0.in_layers.0": "up_blocks.2.resnets.0.norm1",
|
||||
"diffusion_model.output_blocks.6.0.in_layers.2": "up_blocks.2.resnets.0.conv1",
|
||||
"diffusion_model.output_blocks.6.0.emb_layers.1": "up_blocks.2.resnets.0.time_emb_proj",
|
||||
"diffusion_model.output_blocks.6.0.out_layers.0": "up_blocks.2.resnets.0.norm2",
|
||||
"diffusion_model.output_blocks.6.0.out_layers.3": "up_blocks.2.resnets.0.conv2",
|
||||
"diffusion_model.output_blocks.6.0.skip_connection": "up_blocks.2.resnets.0.conv_shortcut",
|
||||
"diffusion_model.output_blocks.6.1.norm": "up_blocks.2.attentions.0.norm",
|
||||
"diffusion_model.output_blocks.6.1.proj_in": "up_blocks.2.attentions.0.proj_in",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1": "up_blocks.2.attentions.0.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_q": "up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_k": "up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_v": "up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0": "up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2": "up_blocks.2.attentions.0.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q": "up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k": "up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v": "up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0": "up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3": "up_blocks.2.attentions.0.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj": "up_blocks.2.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2": "up_blocks.2.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.6.1.proj_out": "up_blocks.2.attentions.0.proj_out",
|
||||
"diffusion_model.output_blocks.7.0.in_layers.0": "up_blocks.2.resnets.1.norm1",
|
||||
"diffusion_model.output_blocks.7.0.in_layers.2": "up_blocks.2.resnets.1.conv1",
|
||||
"diffusion_model.output_blocks.7.0.emb_layers.1": "up_blocks.2.resnets.1.time_emb_proj",
|
||||
"diffusion_model.output_blocks.7.0.out_layers.0": "up_blocks.2.resnets.1.norm2",
|
||||
"diffusion_model.output_blocks.7.0.out_layers.3": "up_blocks.2.resnets.1.conv2",
|
||||
"diffusion_model.output_blocks.7.0.skip_connection": "up_blocks.2.resnets.1.conv_shortcut",
|
||||
"diffusion_model.output_blocks.7.1.norm": "up_blocks.2.attentions.1.norm",
|
||||
"diffusion_model.output_blocks.7.1.proj_in": "up_blocks.2.attentions.1.proj_in",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1": "up_blocks.2.attentions.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_q": "up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_k": "up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_v": "up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0": "up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2": "up_blocks.2.attentions.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q": "up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k": "up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v": "up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0": "up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3": "up_blocks.2.attentions.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj": "up_blocks.2.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2": "up_blocks.2.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.7.1.proj_out": "up_blocks.2.attentions.1.proj_out",
|
||||
"diffusion_model.output_blocks.8.0.in_layers.0": "up_blocks.2.resnets.2.norm1",
|
||||
"diffusion_model.output_blocks.8.0.in_layers.2": "up_blocks.2.resnets.2.conv1",
|
||||
"diffusion_model.output_blocks.8.0.emb_layers.1": "up_blocks.2.resnets.2.time_emb_proj",
|
||||
"diffusion_model.output_blocks.8.0.out_layers.0": "up_blocks.2.resnets.2.norm2",
|
||||
"diffusion_model.output_blocks.8.0.out_layers.3": "up_blocks.2.resnets.2.conv2",
|
||||
"diffusion_model.output_blocks.8.0.skip_connection": "up_blocks.2.resnets.2.conv_shortcut",
|
||||
"diffusion_model.output_blocks.8.1.norm": "up_blocks.2.attentions.2.norm",
|
||||
"diffusion_model.output_blocks.8.1.proj_in": "up_blocks.2.attentions.2.proj_in",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1": "up_blocks.2.attentions.2.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_q": "up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_k": "up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_v": "up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0": "up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2": "up_blocks.2.attentions.2.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q": "up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k": "up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v": "up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0": "up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3": "up_blocks.2.attentions.2.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj": "up_blocks.2.attentions.2.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2": "up_blocks.2.attentions.2.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.8.1.proj_out": "up_blocks.2.attentions.2.proj_out",
|
||||
"diffusion_model.output_blocks.8.2.conv": "up_blocks.2.upsamplers.0.conv",
|
||||
"diffusion_model.output_blocks.9.0.in_layers.0": "up_blocks.3.resnets.0.norm1",
|
||||
"diffusion_model.output_blocks.9.0.in_layers.2": "up_blocks.3.resnets.0.conv1",
|
||||
"diffusion_model.output_blocks.9.0.emb_layers.1": "up_blocks.3.resnets.0.time_emb_proj",
|
||||
"diffusion_model.output_blocks.9.0.out_layers.0": "up_blocks.3.resnets.0.norm2",
|
||||
"diffusion_model.output_blocks.9.0.out_layers.3": "up_blocks.3.resnets.0.conv2",
|
||||
"diffusion_model.output_blocks.9.0.skip_connection": "up_blocks.3.resnets.0.conv_shortcut",
|
||||
"diffusion_model.output_blocks.9.1.norm": "up_blocks.3.attentions.0.norm",
|
||||
"diffusion_model.output_blocks.9.1.proj_in": "up_blocks.3.attentions.0.proj_in",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1": "up_blocks.3.attentions.0.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_q": "up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_k": "up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_v": "up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0": "up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2": "up_blocks.3.attentions.0.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q": "up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k": "up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v": "up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0": "up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3": "up_blocks.3.attentions.0.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj": "up_blocks.3.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2": "up_blocks.3.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.9.1.proj_out": "up_blocks.3.attentions.0.proj_out",
|
||||
"diffusion_model.output_blocks.10.0.in_layers.0": "up_blocks.3.resnets.1.norm1",
|
||||
"diffusion_model.output_blocks.10.0.in_layers.2": "up_blocks.3.resnets.1.conv1",
|
||||
"diffusion_model.output_blocks.10.0.emb_layers.1": "up_blocks.3.resnets.1.time_emb_proj",
|
||||
"diffusion_model.output_blocks.10.0.out_layers.0": "up_blocks.3.resnets.1.norm2",
|
||||
"diffusion_model.output_blocks.10.0.out_layers.3": "up_blocks.3.resnets.1.conv2",
|
||||
"diffusion_model.output_blocks.10.0.skip_connection": "up_blocks.3.resnets.1.conv_shortcut",
|
||||
"diffusion_model.output_blocks.10.1.norm": "up_blocks.3.attentions.1.norm",
|
||||
"diffusion_model.output_blocks.10.1.proj_in": "up_blocks.3.attentions.1.proj_in",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1": "up_blocks.3.attentions.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_q": "up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_k": "up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_v": "up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0": "up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2": "up_blocks.3.attentions.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q": "up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k": "up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v": "up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0": "up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3": "up_blocks.3.attentions.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj": "up_blocks.3.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2": "up_blocks.3.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.10.1.proj_out": "up_blocks.3.attentions.1.proj_out",
|
||||
"diffusion_model.output_blocks.11.0.in_layers.0": "up_blocks.3.resnets.2.norm1",
|
||||
"diffusion_model.output_blocks.11.0.in_layers.2": "up_blocks.3.resnets.2.conv1",
|
||||
"diffusion_model.output_blocks.11.0.emb_layers.1": "up_blocks.3.resnets.2.time_emb_proj",
|
||||
"diffusion_model.output_blocks.11.0.out_layers.0": "up_blocks.3.resnets.2.norm2",
|
||||
"diffusion_model.output_blocks.11.0.out_layers.3": "up_blocks.3.resnets.2.conv2",
|
||||
"diffusion_model.output_blocks.11.0.skip_connection": "up_blocks.3.resnets.2.conv_shortcut",
|
||||
"diffusion_model.output_blocks.11.1.norm": "up_blocks.3.attentions.2.norm",
|
||||
"diffusion_model.output_blocks.11.1.proj_in": "up_blocks.3.attentions.2.proj_in",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1": "up_blocks.3.attentions.2.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_q": "up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_k": "up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_v": "up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0": "up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2": "up_blocks.3.attentions.2.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q": "up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k": "up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v": "up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0": "up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3": "up_blocks.3.attentions.2.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj": "up_blocks.3.attentions.2.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2": "up_blocks.3.attentions.2.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.11.1.proj_out": "up_blocks.3.attentions.2.proj_out",
|
||||
"diffusion_model.out.0": "conv_norm_out",
|
||||
"diffusion_model.out.2": "conv_out"
|
||||
},
|
||||
"source_aliases": {},
|
||||
"ignorable_prefixes": []
|
||||
}
|
@ -0,0 +1,397 @@
|
||||
{
|
||||
"mapping": {
|
||||
"time_embedding.linear_1": "diffusion_model.time_embed.0",
|
||||
"time_embedding.linear_2": "diffusion_model.time_embed.2",
|
||||
"conv_in": "diffusion_model.input_blocks.0.0",
|
||||
"down_blocks.0.resnets.0.norm1": "diffusion_model.input_blocks.1.0.in_layers.0",
|
||||
"down_blocks.0.resnets.0.conv1": "diffusion_model.input_blocks.1.0.in_layers.2",
|
||||
"down_blocks.0.resnets.0.time_emb_proj": "diffusion_model.input_blocks.1.0.emb_layers.1",
|
||||
"down_blocks.0.resnets.0.norm2": "diffusion_model.input_blocks.1.0.out_layers.0",
|
||||
"down_blocks.0.resnets.0.conv2": "diffusion_model.input_blocks.1.0.out_layers.3",
|
||||
"down_blocks.0.attentions.0.norm": "diffusion_model.input_blocks.1.1.norm",
|
||||
"down_blocks.0.attentions.0.proj_in": "diffusion_model.input_blocks.1.1.proj_in",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm1": "diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_q": "diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_k": "diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_v": "diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_out.0": "diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm2": "diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_q": "diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_k": "diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_v": "diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_out.0": "diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm3": "diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.ff.net.0.proj": "diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.ff.net.2": "diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.0.attentions.0.proj_out": "diffusion_model.input_blocks.1.1.proj_out",
|
||||
"down_blocks.0.resnets.1.norm1": "diffusion_model.input_blocks.2.0.in_layers.0",
|
||||
"down_blocks.0.resnets.1.conv1": "diffusion_model.input_blocks.2.0.in_layers.2",
|
||||
"down_blocks.0.resnets.1.time_emb_proj": "diffusion_model.input_blocks.2.0.emb_layers.1",
|
||||
"down_blocks.0.resnets.1.norm2": "diffusion_model.input_blocks.2.0.out_layers.0",
|
||||
"down_blocks.0.resnets.1.conv2": "diffusion_model.input_blocks.2.0.out_layers.3",
|
||||
"down_blocks.0.attentions.1.norm": "diffusion_model.input_blocks.2.1.norm",
|
||||
"down_blocks.0.attentions.1.proj_in": "diffusion_model.input_blocks.2.1.proj_in",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm1": "diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_q": "diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_k": "diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_v": "diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_out.0": "diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm2": "diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_q": "diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_k": "diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_v": "diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_out.0": "diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm3": "diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.ff.net.0.proj": "diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.ff.net.2": "diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.0.attentions.1.proj_out": "diffusion_model.input_blocks.2.1.proj_out",
|
||||
"down_blocks.0.downsamplers.0.conv": "diffusion_model.input_blocks.3.0.op",
|
||||
"down_blocks.1.resnets.0.norm1": "diffusion_model.input_blocks.4.0.in_layers.0",
|
||||
"down_blocks.1.resnets.0.conv1": "diffusion_model.input_blocks.4.0.in_layers.2",
|
||||
"down_blocks.1.resnets.0.time_emb_proj": "diffusion_model.input_blocks.4.0.emb_layers.1",
|
||||
"down_blocks.1.resnets.0.norm2": "diffusion_model.input_blocks.4.0.out_layers.0",
|
||||
"down_blocks.1.resnets.0.conv2": "diffusion_model.input_blocks.4.0.out_layers.3",
|
||||
"down_blocks.1.resnets.0.conv_shortcut": "diffusion_model.input_blocks.4.0.skip_connection",
|
||||
"down_blocks.1.attentions.0.norm": "diffusion_model.input_blocks.4.1.norm",
|
||||
"down_blocks.1.attentions.0.proj_in": "diffusion_model.input_blocks.4.1.proj_in",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm1": "diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_q": "diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k": "diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v": "diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0": "diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm2": "diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_q": "diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_k": "diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_v": "diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_out.0": "diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm3": "diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.ff.net.0.proj": "diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.ff.net.2": "diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.1.attentions.0.proj_out": "diffusion_model.input_blocks.4.1.proj_out",
|
||||
"down_blocks.1.resnets.1.norm1": "diffusion_model.input_blocks.5.0.in_layers.0",
|
||||
"down_blocks.1.resnets.1.conv1": "diffusion_model.input_blocks.5.0.in_layers.2",
|
||||
"down_blocks.1.resnets.1.time_emb_proj": "diffusion_model.input_blocks.5.0.emb_layers.1",
|
||||
"down_blocks.1.resnets.1.norm2": "diffusion_model.input_blocks.5.0.out_layers.0",
|
||||
"down_blocks.1.resnets.1.conv2": "diffusion_model.input_blocks.5.0.out_layers.3",
|
||||
"down_blocks.1.attentions.1.norm": "diffusion_model.input_blocks.5.1.norm",
|
||||
"down_blocks.1.attentions.1.proj_in": "diffusion_model.input_blocks.5.1.proj_in",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm1": "diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_q": "diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_k": "diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v": "diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0": "diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm2": "diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_q": "diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k": "diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_v": "diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_out.0": "diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm3": "diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj": "diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.ff.net.2": "diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.1.attentions.1.proj_out": "diffusion_model.input_blocks.5.1.proj_out",
|
||||
"down_blocks.1.downsamplers.0.conv": "diffusion_model.input_blocks.6.0.op",
|
||||
"down_blocks.2.resnets.0.norm1": "diffusion_model.input_blocks.7.0.in_layers.0",
|
||||
"down_blocks.2.resnets.0.conv1": "diffusion_model.input_blocks.7.0.in_layers.2",
|
||||
"down_blocks.2.resnets.0.time_emb_proj": "diffusion_model.input_blocks.7.0.emb_layers.1",
|
||||
"down_blocks.2.resnets.0.norm2": "diffusion_model.input_blocks.7.0.out_layers.0",
|
||||
"down_blocks.2.resnets.0.conv2": "diffusion_model.input_blocks.7.0.out_layers.3",
|
||||
"down_blocks.2.resnets.0.conv_shortcut": "diffusion_model.input_blocks.7.0.skip_connection",
|
||||
"down_blocks.2.attentions.0.norm": "diffusion_model.input_blocks.7.1.norm",
|
||||
"down_blocks.2.attentions.0.proj_in": "diffusion_model.input_blocks.7.1.proj_in",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm1": "diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_q": "diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_k": "diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_v": "diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_out.0": "diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm2": "diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_q": "diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_k": "diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_v": "diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_out.0": "diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm3": "diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.ff.net.0.proj": "diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.ff.net.2": "diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.2.attentions.0.proj_out": "diffusion_model.input_blocks.7.1.proj_out",
|
||||
"down_blocks.2.resnets.1.norm1": "diffusion_model.input_blocks.8.0.in_layers.0",
|
||||
"down_blocks.2.resnets.1.conv1": "diffusion_model.input_blocks.8.0.in_layers.2",
|
||||
"down_blocks.2.resnets.1.time_emb_proj": "diffusion_model.input_blocks.8.0.emb_layers.1",
|
||||
"down_blocks.2.resnets.1.norm2": "diffusion_model.input_blocks.8.0.out_layers.0",
|
||||
"down_blocks.2.resnets.1.conv2": "diffusion_model.input_blocks.8.0.out_layers.3",
|
||||
"down_blocks.2.attentions.1.norm": "diffusion_model.input_blocks.8.1.norm",
|
||||
"down_blocks.2.attentions.1.proj_in": "diffusion_model.input_blocks.8.1.proj_in",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm1": "diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_q": "diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_k": "diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_v": "diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_out.0": "diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm2": "diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_q": "diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_k": "diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_v": "diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_out.0": "diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm3": "diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.ff.net.0.proj": "diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.ff.net.2": "diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.2.attentions.1.proj_out": "diffusion_model.input_blocks.8.1.proj_out",
|
||||
"down_blocks.2.downsamplers.0.conv": "diffusion_model.input_blocks.9.0.op",
|
||||
"down_blocks.3.resnets.0.norm1": "diffusion_model.input_blocks.10.0.in_layers.0",
|
||||
"down_blocks.3.resnets.0.conv1": "diffusion_model.input_blocks.10.0.in_layers.2",
|
||||
"down_blocks.3.resnets.0.time_emb_proj": "diffusion_model.input_blocks.10.0.emb_layers.1",
|
||||
"down_blocks.3.resnets.0.norm2": "diffusion_model.input_blocks.10.0.out_layers.0",
|
||||
"down_blocks.3.resnets.0.conv2": "diffusion_model.input_blocks.10.0.out_layers.3",
|
||||
"down_blocks.3.resnets.1.norm1": "diffusion_model.input_blocks.11.0.in_layers.0",
|
||||
"down_blocks.3.resnets.1.conv1": "diffusion_model.input_blocks.11.0.in_layers.2",
|
||||
"down_blocks.3.resnets.1.time_emb_proj": "diffusion_model.input_blocks.11.0.emb_layers.1",
|
||||
"down_blocks.3.resnets.1.norm2": "diffusion_model.input_blocks.11.0.out_layers.0",
|
||||
"down_blocks.3.resnets.1.conv2": "diffusion_model.input_blocks.11.0.out_layers.3",
|
||||
"mid_block.resnets.0.norm1": "diffusion_model.middle_block.0.in_layers.0",
|
||||
"mid_block.resnets.0.conv1": "diffusion_model.middle_block.0.in_layers.2",
|
||||
"mid_block.resnets.0.time_emb_proj": "diffusion_model.middle_block.0.emb_layers.1",
|
||||
"mid_block.resnets.0.norm2": "diffusion_model.middle_block.0.out_layers.0",
|
||||
"mid_block.resnets.0.conv2": "diffusion_model.middle_block.0.out_layers.3",
|
||||
"mid_block.attentions.0.norm": "diffusion_model.middle_block.1.norm",
|
||||
"mid_block.attentions.0.proj_in": "diffusion_model.middle_block.1.proj_in",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm1": "diffusion_model.middle_block.1.transformer_blocks.0.norm1",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_q": "diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_k": "diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_k",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_v": "diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_out.0": "diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm2": "diffusion_model.middle_block.1.transformer_blocks.0.norm2",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_q": "diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_k": "diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_v": "diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_out.0": "diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm3": "diffusion_model.middle_block.1.transformer_blocks.0.norm3",
|
||||
"mid_block.attentions.0.transformer_blocks.0.ff.net.0.proj": "diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"mid_block.attentions.0.transformer_blocks.0.ff.net.2": "diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2",
|
||||
"mid_block.attentions.0.proj_out": "diffusion_model.middle_block.1.proj_out",
|
||||
"mid_block.resnets.1.norm1": "diffusion_model.middle_block.2.in_layers.0",
|
||||
"mid_block.resnets.1.conv1": "diffusion_model.middle_block.2.in_layers.2",
|
||||
"mid_block.resnets.1.time_emb_proj": "diffusion_model.middle_block.2.emb_layers.1",
|
||||
"mid_block.resnets.1.norm2": "diffusion_model.middle_block.2.out_layers.0",
|
||||
"mid_block.resnets.1.conv2": "diffusion_model.middle_block.2.out_layers.3",
|
||||
"up_blocks.0.resnets.0.norm1": "diffusion_model.output_blocks.0.0.in_layers.0",
|
||||
"up_blocks.0.resnets.0.conv1": "diffusion_model.output_blocks.0.0.in_layers.2",
|
||||
"up_blocks.0.resnets.0.time_emb_proj": "diffusion_model.output_blocks.0.0.emb_layers.1",
|
||||
"up_blocks.0.resnets.0.norm2": "diffusion_model.output_blocks.0.0.out_layers.0",
|
||||
"up_blocks.0.resnets.0.conv2": "diffusion_model.output_blocks.0.0.out_layers.3",
|
||||
"up_blocks.0.resnets.0.conv_shortcut": "diffusion_model.output_blocks.0.0.skip_connection",
|
||||
"up_blocks.0.resnets.1.norm1": "diffusion_model.output_blocks.1.0.in_layers.0",
|
||||
"up_blocks.0.resnets.1.conv1": "diffusion_model.output_blocks.1.0.in_layers.2",
|
||||
"up_blocks.0.resnets.1.time_emb_proj": "diffusion_model.output_blocks.1.0.emb_layers.1",
|
||||
"up_blocks.0.resnets.1.norm2": "diffusion_model.output_blocks.1.0.out_layers.0",
|
||||
"up_blocks.0.resnets.1.conv2": "diffusion_model.output_blocks.1.0.out_layers.3",
|
||||
"up_blocks.0.resnets.1.conv_shortcut": "diffusion_model.output_blocks.1.0.skip_connection",
|
||||
"up_blocks.0.resnets.2.norm1": "diffusion_model.output_blocks.2.0.in_layers.0",
|
||||
"up_blocks.0.resnets.2.conv1": "diffusion_model.output_blocks.2.0.in_layers.2",
|
||||
"up_blocks.0.resnets.2.time_emb_proj": "diffusion_model.output_blocks.2.0.emb_layers.1",
|
||||
"up_blocks.0.resnets.2.norm2": "diffusion_model.output_blocks.2.0.out_layers.0",
|
||||
"up_blocks.0.resnets.2.conv2": "diffusion_model.output_blocks.2.0.out_layers.3",
|
||||
"up_blocks.0.resnets.2.conv_shortcut": "diffusion_model.output_blocks.2.0.skip_connection",
|
||||
"up_blocks.0.upsamplers.0.conv": "diffusion_model.output_blocks.2.1.conv",
|
||||
"up_blocks.1.resnets.0.norm1": "diffusion_model.output_blocks.3.0.in_layers.0",
|
||||
"up_blocks.1.resnets.0.conv1": "diffusion_model.output_blocks.3.0.in_layers.2",
|
||||
"up_blocks.1.resnets.0.time_emb_proj": "diffusion_model.output_blocks.3.0.emb_layers.1",
|
||||
"up_blocks.1.resnets.0.norm2": "diffusion_model.output_blocks.3.0.out_layers.0",
|
||||
"up_blocks.1.resnets.0.conv2": "diffusion_model.output_blocks.3.0.out_layers.3",
|
||||
"up_blocks.1.resnets.0.conv_shortcut": "diffusion_model.output_blocks.3.0.skip_connection",
|
||||
"up_blocks.1.attentions.0.norm": "diffusion_model.output_blocks.3.1.norm",
|
||||
"up_blocks.1.attentions.0.proj_in": "diffusion_model.output_blocks.3.1.proj_in",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.norm1": "diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_q": "diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k": "diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v": "diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0": "diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.norm2": "diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_q": "diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_k": "diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_v": "diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_out.0": "diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.norm3": "diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.ff.net.0.proj": "diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.ff.net.2": "diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.1.attentions.0.proj_out": "diffusion_model.output_blocks.3.1.proj_out",
|
||||
"up_blocks.1.resnets.1.norm1": "diffusion_model.output_blocks.4.0.in_layers.0",
|
||||
"up_blocks.1.resnets.1.conv1": "diffusion_model.output_blocks.4.0.in_layers.2",
|
||||
"up_blocks.1.resnets.1.time_emb_proj": "diffusion_model.output_blocks.4.0.emb_layers.1",
|
||||
"up_blocks.1.resnets.1.norm2": "diffusion_model.output_blocks.4.0.out_layers.0",
|
||||
"up_blocks.1.resnets.1.conv2": "diffusion_model.output_blocks.4.0.out_layers.3",
|
||||
"up_blocks.1.resnets.1.conv_shortcut": "diffusion_model.output_blocks.4.0.skip_connection",
|
||||
"up_blocks.1.attentions.1.norm": "diffusion_model.output_blocks.4.1.norm",
|
||||
"up_blocks.1.attentions.1.proj_in": "diffusion_model.output_blocks.4.1.proj_in",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.norm1": "diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_q": "diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_k": "diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v": "diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0": "diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.norm2": "diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_q": "diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k": "diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_v": "diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_out.0": "diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.norm3": "diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj": "diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.ff.net.2": "diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.1.attentions.1.proj_out": "diffusion_model.output_blocks.4.1.proj_out",
|
||||
"up_blocks.1.resnets.2.norm1": "diffusion_model.output_blocks.5.0.in_layers.0",
|
||||
"up_blocks.1.resnets.2.conv1": "diffusion_model.output_blocks.5.0.in_layers.2",
|
||||
"up_blocks.1.resnets.2.time_emb_proj": "diffusion_model.output_blocks.5.0.emb_layers.1",
|
||||
"up_blocks.1.resnets.2.norm2": "diffusion_model.output_blocks.5.0.out_layers.0",
|
||||
"up_blocks.1.resnets.2.conv2": "diffusion_model.output_blocks.5.0.out_layers.3",
|
||||
"up_blocks.1.resnets.2.conv_shortcut": "diffusion_model.output_blocks.5.0.skip_connection",
|
||||
"up_blocks.1.attentions.2.norm": "diffusion_model.output_blocks.5.1.norm",
|
||||
"up_blocks.1.attentions.2.proj_in": "diffusion_model.output_blocks.5.1.proj_in",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.norm1": "diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_q": "diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_k": "diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_v": "diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_out.0": "diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.norm2": "diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_q": "diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_k": "diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_v": "diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_out.0": "diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.norm3": "diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.ff.net.0.proj": "diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.ff.net.2": "diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.1.attentions.2.proj_out": "diffusion_model.output_blocks.5.1.proj_out",
|
||||
"up_blocks.1.upsamplers.0.conv": "diffusion_model.output_blocks.5.2.conv",
|
||||
"up_blocks.2.resnets.0.norm1": "diffusion_model.output_blocks.6.0.in_layers.0",
|
||||
"up_blocks.2.resnets.0.conv1": "diffusion_model.output_blocks.6.0.in_layers.2",
|
||||
"up_blocks.2.resnets.0.time_emb_proj": "diffusion_model.output_blocks.6.0.emb_layers.1",
|
||||
"up_blocks.2.resnets.0.norm2": "diffusion_model.output_blocks.6.0.out_layers.0",
|
||||
"up_blocks.2.resnets.0.conv2": "diffusion_model.output_blocks.6.0.out_layers.3",
|
||||
"up_blocks.2.resnets.0.conv_shortcut": "diffusion_model.output_blocks.6.0.skip_connection",
|
||||
"up_blocks.2.attentions.0.norm": "diffusion_model.output_blocks.6.1.norm",
|
||||
"up_blocks.2.attentions.0.proj_in": "diffusion_model.output_blocks.6.1.proj_in",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.norm1": "diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_q": "diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_k": "diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_v": "diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_out.0": "diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.norm2": "diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_q": "diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_k": "diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_v": "diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_out.0": "diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.norm3": "diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.ff.net.0.proj": "diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.ff.net.2": "diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.2.attentions.0.proj_out": "diffusion_model.output_blocks.6.1.proj_out",
|
||||
"up_blocks.2.resnets.1.norm1": "diffusion_model.output_blocks.7.0.in_layers.0",
|
||||
"up_blocks.2.resnets.1.conv1": "diffusion_model.output_blocks.7.0.in_layers.2",
|
||||
"up_blocks.2.resnets.1.time_emb_proj": "diffusion_model.output_blocks.7.0.emb_layers.1",
|
||||
"up_blocks.2.resnets.1.norm2": "diffusion_model.output_blocks.7.0.out_layers.0",
|
||||
"up_blocks.2.resnets.1.conv2": "diffusion_model.output_blocks.7.0.out_layers.3",
|
||||
"up_blocks.2.resnets.1.conv_shortcut": "diffusion_model.output_blocks.7.0.skip_connection",
|
||||
"up_blocks.2.attentions.1.norm": "diffusion_model.output_blocks.7.1.norm",
|
||||
"up_blocks.2.attentions.1.proj_in": "diffusion_model.output_blocks.7.1.proj_in",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.norm1": "diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_q": "diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_k": "diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_v": "diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_out.0": "diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.norm2": "diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_q": "diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_k": "diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_v": "diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_out.0": "diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.norm3": "diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.ff.net.0.proj": "diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.ff.net.2": "diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.2.attentions.1.proj_out": "diffusion_model.output_blocks.7.1.proj_out",
|
||||
"up_blocks.2.resnets.2.norm1": "diffusion_model.output_blocks.8.0.in_layers.0",
|
||||
"up_blocks.2.resnets.2.conv1": "diffusion_model.output_blocks.8.0.in_layers.2",
|
||||
"up_blocks.2.resnets.2.time_emb_proj": "diffusion_model.output_blocks.8.0.emb_layers.1",
|
||||
"up_blocks.2.resnets.2.norm2": "diffusion_model.output_blocks.8.0.out_layers.0",
|
||||
"up_blocks.2.resnets.2.conv2": "diffusion_model.output_blocks.8.0.out_layers.3",
|
||||
"up_blocks.2.resnets.2.conv_shortcut": "diffusion_model.output_blocks.8.0.skip_connection",
|
||||
"up_blocks.2.attentions.2.norm": "diffusion_model.output_blocks.8.1.norm",
|
||||
"up_blocks.2.attentions.2.proj_in": "diffusion_model.output_blocks.8.1.proj_in",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.norm1": "diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_q": "diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_k": "diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_v": "diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_out.0": "diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.norm2": "diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_q": "diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_k": "diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_v": "diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_out.0": "diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.norm3": "diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.ff.net.0.proj": "diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.ff.net.2": "diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.2.attentions.2.proj_out": "diffusion_model.output_blocks.8.1.proj_out",
|
||||
"up_blocks.2.upsamplers.0.conv": "diffusion_model.output_blocks.8.2.conv",
|
||||
"up_blocks.3.resnets.0.norm1": "diffusion_model.output_blocks.9.0.in_layers.0",
|
||||
"up_blocks.3.resnets.0.conv1": "diffusion_model.output_blocks.9.0.in_layers.2",
|
||||
"up_blocks.3.resnets.0.time_emb_proj": "diffusion_model.output_blocks.9.0.emb_layers.1",
|
||||
"up_blocks.3.resnets.0.norm2": "diffusion_model.output_blocks.9.0.out_layers.0",
|
||||
"up_blocks.3.resnets.0.conv2": "diffusion_model.output_blocks.9.0.out_layers.3",
|
||||
"up_blocks.3.resnets.0.conv_shortcut": "diffusion_model.output_blocks.9.0.skip_connection",
|
||||
"up_blocks.3.attentions.0.norm": "diffusion_model.output_blocks.9.1.norm",
|
||||
"up_blocks.3.attentions.0.proj_in": "diffusion_model.output_blocks.9.1.proj_in",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.norm1": "diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_q": "diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_k": "diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_v": "diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_out.0": "diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.norm2": "diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_q": "diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_k": "diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_v": "diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_out.0": "diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.norm3": "diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.ff.net.0.proj": "diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.ff.net.2": "diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.3.attentions.0.proj_out": "diffusion_model.output_blocks.9.1.proj_out",
|
||||
"up_blocks.3.resnets.1.norm1": "diffusion_model.output_blocks.10.0.in_layers.0",
|
||||
"up_blocks.3.resnets.1.conv1": "diffusion_model.output_blocks.10.0.in_layers.2",
|
||||
"up_blocks.3.resnets.1.time_emb_proj": "diffusion_model.output_blocks.10.0.emb_layers.1",
|
||||
"up_blocks.3.resnets.1.norm2": "diffusion_model.output_blocks.10.0.out_layers.0",
|
||||
"up_blocks.3.resnets.1.conv2": "diffusion_model.output_blocks.10.0.out_layers.3",
|
||||
"up_blocks.3.resnets.1.conv_shortcut": "diffusion_model.output_blocks.10.0.skip_connection",
|
||||
"up_blocks.3.attentions.1.norm": "diffusion_model.output_blocks.10.1.norm",
|
||||
"up_blocks.3.attentions.1.proj_in": "diffusion_model.output_blocks.10.1.proj_in",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.norm1": "diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_q": "diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_k": "diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_v": "diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_out.0": "diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.norm2": "diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_q": "diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_k": "diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_v": "diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_out.0": "diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.norm3": "diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.ff.net.0.proj": "diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.ff.net.2": "diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.3.attentions.1.proj_out": "diffusion_model.output_blocks.10.1.proj_out",
|
||||
"up_blocks.3.resnets.2.norm1": "diffusion_model.output_blocks.11.0.in_layers.0",
|
||||
"up_blocks.3.resnets.2.conv1": "diffusion_model.output_blocks.11.0.in_layers.2",
|
||||
"up_blocks.3.resnets.2.time_emb_proj": "diffusion_model.output_blocks.11.0.emb_layers.1",
|
||||
"up_blocks.3.resnets.2.norm2": "diffusion_model.output_blocks.11.0.out_layers.0",
|
||||
"up_blocks.3.resnets.2.conv2": "diffusion_model.output_blocks.11.0.out_layers.3",
|
||||
"up_blocks.3.resnets.2.conv_shortcut": "diffusion_model.output_blocks.11.0.skip_connection",
|
||||
"up_blocks.3.attentions.2.norm": "diffusion_model.output_blocks.11.1.norm",
|
||||
"up_blocks.3.attentions.2.proj_in": "diffusion_model.output_blocks.11.1.proj_in",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.norm1": "diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_q": "diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_k": "diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_v": "diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_out.0": "diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.norm2": "diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_q": "diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_k": "diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_v": "diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_out.0": "diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.norm3": "diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.ff.net.0.proj": "diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.ff.net.2": "diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.3.attentions.2.proj_out": "diffusion_model.output_blocks.11.1.proj_out",
|
||||
"conv_norm_out": "diffusion_model.out.0",
|
||||
"conv_out": "diffusion_model.out.2"
|
||||
},
|
||||
"source_aliases": {},
|
||||
"ignorable_prefixes": []
|
||||
}
|
@ -0,0 +1,397 @@
|
||||
{
|
||||
"ignorable_prefixes": [],
|
||||
"mapping": {
|
||||
"time_embedding.linear_1": "TimestepEncoder.RangeEncoder.Linear_1",
|
||||
"time_embedding.linear_2": "TimestepEncoder.RangeEncoder.Linear_2",
|
||||
"down_blocks.2.resnets.0.time_emb_proj": "DownBlocks.Chain_8.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_out.0": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_out.0": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"down_blocks.2.resnets.1.time_emb_proj": "DownBlocks.Chain_9.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_out.0": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_out.0": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"down_blocks.3.resnets.0.time_emb_proj": "DownBlocks.Chain_11.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.3.resnets.1.time_emb_proj": "DownBlocks.Chain_12.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"mid_block.resnets.0.time_emb_proj": "Sum.MiddleBlock.ResidualBlock_1.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_out.0": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_out.0": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"mid_block.resnets.1.time_emb_proj": "Sum.MiddleBlock.ResidualBlock_2.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.0.resnets.0.time_emb_proj": "UpBlocks.Chain_1.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.0.resnets.1.time_emb_proj": "UpBlocks.Chain_2.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.0.resnets.2.time_emb_proj": "UpBlocks.Chain_3.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.1.resnets.0.time_emb_proj": "UpBlocks.Chain_4.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_out.0": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"up_blocks.1.resnets.1.time_emb_proj": "UpBlocks.Chain_5.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_out.0": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"up_blocks.1.resnets.2.time_emb_proj": "UpBlocks.Chain_6.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_out.0": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_out.0": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"conv_in": "DownBlocks.Chain_1.Conv2d",
|
||||
"down_blocks.0.resnets.0.norm1": "DownBlocks.Chain_2.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.0.resnets.0.norm2": "DownBlocks.Chain_2.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.0.attentions.0.norm": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"down_blocks.0.resnets.1.norm1": "DownBlocks.Chain_3.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.0.resnets.1.norm2": "DownBlocks.Chain_3.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.0.attentions.1.norm": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"down_blocks.1.resnets.0.norm1": "DownBlocks.Chain_5.ResidualBlock.Chain.GroupNorm_1",
|
||||
"up_blocks.3.resnets.0.norm2": "UpBlocks.Chain_10.ResidualBlock.Chain.GroupNorm_2",
|
||||
"up_blocks.3.attentions.0.norm": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"up_blocks.3.resnets.1.norm2": "UpBlocks.Chain_11.ResidualBlock.Chain.GroupNorm_2",
|
||||
"up_blocks.3.attentions.1.norm": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"up_blocks.3.resnets.2.norm2": "UpBlocks.Chain_12.ResidualBlock.Chain.GroupNorm_2",
|
||||
"up_blocks.3.attentions.2.norm": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"conv_norm_out": "Chain.GroupNorm",
|
||||
"down_blocks.0.resnets.0.conv1": "DownBlocks.Chain_2.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.0.resnets.0.conv2": "DownBlocks.Chain_2.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.0.resnets.1.conv1": "DownBlocks.Chain_3.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.0.resnets.1.conv2": "DownBlocks.Chain_3.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.0.downsamplers.0.conv": "DownBlocks.Chain_4.Downsample.Conv2d",
|
||||
"up_blocks.3.resnets.0.conv2": "UpBlocks.Chain_10.ResidualBlock.Chain.Conv2d",
|
||||
"up_blocks.3.resnets.1.conv2": "UpBlocks.Chain_11.ResidualBlock.Chain.Conv2d",
|
||||
"up_blocks.3.resnets.2.conv2": "UpBlocks.Chain_12.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.0.resnets.0.time_emb_proj": "DownBlocks.Chain_2.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.ff.net.2": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"down_blocks.0.resnets.1.time_emb_proj": "DownBlocks.Chain_3.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.ff.net.2": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"up_blocks.3.resnets.0.time_emb_proj": "UpBlocks.Chain_10.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.ff.net.2": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"up_blocks.3.resnets.1.time_emb_proj": "UpBlocks.Chain_11.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.ff.net.2": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"up_blocks.3.resnets.2.time_emb_proj": "UpBlocks.Chain_12.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.ff.net.2": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"down_blocks.0.attentions.0.proj_in": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"down_blocks.0.attentions.0.proj_out": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"down_blocks.0.attentions.1.proj_in": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"down_blocks.0.attentions.1.proj_out": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"up_blocks.3.attentions.0.proj_in": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"up_blocks.3.attentions.0.proj_out": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"up_blocks.3.attentions.1.proj_in": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"up_blocks.3.attentions.1.proj_out": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"up_blocks.3.attentions.2.proj_in": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"up_blocks.3.attentions.2.proj_out": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm1": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm2": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm3": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm1": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm2": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm3": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.norm1": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.norm2": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.norm3": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.norm1": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.norm2": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.norm3": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.norm1": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.norm2": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.norm3": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_q": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_k": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_v": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_q": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_q": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_k": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_v": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_q": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_q": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_k": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_v": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_q": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_q": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_k": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_v": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_q": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_q": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_k": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_v": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_q": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_out.0": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_out.0": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_out.0": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_out.0": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_out.0": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_out.0": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_out.0": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_out.0": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_out.0": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_out.0": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_k": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_v": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_k": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_v": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_k": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_v": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_k": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_v": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_k": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_v": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.ff.net.0.proj": "DownBlocks.Chain_2.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.ff.net.0.proj": "DownBlocks.Chain_3.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.ff.net.0.proj": "UpBlocks.Chain_10.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.ff.net.0.proj": "UpBlocks.Chain_11.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.ff.net.0.proj": "UpBlocks.Chain_12.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"down_blocks.1.resnets.0.conv1": "DownBlocks.Chain_5.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.1.resnets.0.time_emb_proj": "DownBlocks.Chain_5.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.1.resnets.1.time_emb_proj": "DownBlocks.Chain_6.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.2.resnets.0.time_emb_proj": "UpBlocks.Chain_7.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.2.resnets.1.time_emb_proj": "UpBlocks.Chain_8.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"up_blocks.2.resnets.2.time_emb_proj": "UpBlocks.Chain_9.ResidualBlock.Chain.RangeAdapter2d.Chain.Linear",
|
||||
"down_blocks.1.resnets.0.norm2": "DownBlocks.Chain_5.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.1.attentions.0.norm": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"down_blocks.1.resnets.1.norm1": "DownBlocks.Chain_6.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.1.resnets.1.norm2": "DownBlocks.Chain_6.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.1.attentions.1.norm": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"down_blocks.2.resnets.0.norm1": "DownBlocks.Chain_8.ResidualBlock.Chain.GroupNorm_1",
|
||||
"up_blocks.2.resnets.0.norm2": "UpBlocks.Chain_7.ResidualBlock.Chain.GroupNorm_2",
|
||||
"up_blocks.2.attentions.0.norm": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"up_blocks.2.resnets.1.norm2": "UpBlocks.Chain_8.ResidualBlock.Chain.GroupNorm_2",
|
||||
"up_blocks.2.attentions.1.norm": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"up_blocks.2.resnets.2.norm2": "UpBlocks.Chain_9.ResidualBlock.Chain.GroupNorm_2",
|
||||
"up_blocks.2.attentions.2.norm": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"up_blocks.3.resnets.1.norm1": "UpBlocks.Chain_11.ResidualBlock.Chain.GroupNorm_1",
|
||||
"up_blocks.3.resnets.2.norm1": "UpBlocks.Chain_12.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.1.resnets.0.conv2": "DownBlocks.Chain_5.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.1.resnets.1.conv1": "DownBlocks.Chain_6.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.1.resnets.1.conv2": "DownBlocks.Chain_6.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.1.downsamplers.0.conv": "DownBlocks.Chain_7.Downsample.Conv2d",
|
||||
"up_blocks.2.resnets.0.conv2": "UpBlocks.Chain_7.ResidualBlock.Chain.Conv2d",
|
||||
"up_blocks.2.resnets.1.conv2": "UpBlocks.Chain_8.ResidualBlock.Chain.Conv2d",
|
||||
"up_blocks.2.resnets.2.conv2": "UpBlocks.Chain_9.ResidualBlock.Chain.Conv2d",
|
||||
"up_blocks.2.upsamplers.0.conv": "UpBlocks.Chain_9.Upsample.Conv2d",
|
||||
"down_blocks.1.resnets.0.conv_shortcut": "DownBlocks.Chain_5.ResidualBlock.Conv2d",
|
||||
"down_blocks.1.attentions.0.proj_in": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"down_blocks.1.attentions.0.proj_out": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"down_blocks.1.attentions.1.proj_in": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"down_blocks.1.attentions.1.proj_out": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"up_blocks.2.attentions.0.proj_in": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"up_blocks.2.attentions.0.proj_out": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"up_blocks.2.attentions.1.proj_in": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"up_blocks.2.attentions.1.proj_out": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"up_blocks.2.attentions.2.proj_in": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"up_blocks.2.attentions.2.proj_out": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm1": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm2": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm3": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm1": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm2": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm3": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.norm1": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.norm2": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.norm3": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.norm1": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.norm2": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.norm3": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.norm1": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.norm2": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.norm3": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_q": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_q": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_q": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_k": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_q": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_q": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_k": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_v": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_q": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_q": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_k": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_v": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_q": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_q": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_k": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_v": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_q": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_out.0": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_out.0": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_out.0": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_out.0": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_out.0": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_out.0": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_out.0": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Linear",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_out.0": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Linear",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_k": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_v": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_v": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_k": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_v": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_k": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_v": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_k": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_v": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.ff.net.0.proj": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.ff.net.0.proj": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.ff.net.0.proj": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.ff.net.0.proj": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.ff.net.2": "DownBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.ff.net.2": "DownBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.ff.net.2": "UpBlocks.Chain_7.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.ff.net.2": "UpBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.ff.net.2": "UpBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"down_blocks.2.resnets.0.conv1": "DownBlocks.Chain_8.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.2.resnets.0.norm2": "DownBlocks.Chain_8.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.2.attentions.0.norm": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"down_blocks.2.resnets.1.norm1": "DownBlocks.Chain_9.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.2.resnets.1.norm2": "DownBlocks.Chain_9.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.2.attentions.1.norm": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"down_blocks.3.resnets.0.norm1": "DownBlocks.Chain_11.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.3.resnets.0.norm2": "DownBlocks.Chain_11.ResidualBlock.Chain.GroupNorm_2",
|
||||
"down_blocks.3.resnets.1.norm1": "DownBlocks.Chain_12.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.3.resnets.1.norm2": "DownBlocks.Chain_12.ResidualBlock.Chain.GroupNorm_2",
|
||||
"mid_block.resnets.0.norm1": "Sum.MiddleBlock.ResidualBlock_1.Chain.GroupNorm_1",
|
||||
"mid_block.resnets.0.norm2": "Sum.MiddleBlock.ResidualBlock_1.Chain.GroupNorm_2",
|
||||
"mid_block.attentions.0.norm": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"mid_block.resnets.1.norm1": "Sum.MiddleBlock.ResidualBlock_2.Chain.GroupNorm_1",
|
||||
"mid_block.resnets.1.norm2": "Sum.MiddleBlock.ResidualBlock_2.Chain.GroupNorm_2",
|
||||
"up_blocks.0.resnets.0.norm2": "UpBlocks.Chain_1.ResidualBlock.Chain.GroupNorm_2",
|
||||
"up_blocks.0.resnets.1.norm2": "UpBlocks.Chain_2.ResidualBlock.Chain.GroupNorm_2",
|
||||
"up_blocks.0.resnets.2.norm2": "UpBlocks.Chain_3.ResidualBlock.Chain.GroupNorm_2",
|
||||
"up_blocks.1.resnets.0.norm2": "UpBlocks.Chain_4.ResidualBlock.Chain.GroupNorm_2",
|
||||
"up_blocks.1.attentions.0.norm": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"up_blocks.1.resnets.1.norm2": "UpBlocks.Chain_5.ResidualBlock.Chain.GroupNorm_2",
|
||||
"up_blocks.1.attentions.1.norm": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"up_blocks.1.resnets.2.norm2": "UpBlocks.Chain_6.ResidualBlock.Chain.GroupNorm_2",
|
||||
"up_blocks.1.attentions.2.norm": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_1.GroupNorm",
|
||||
"up_blocks.2.resnets.1.norm1": "UpBlocks.Chain_8.ResidualBlock.Chain.GroupNorm_1",
|
||||
"down_blocks.2.resnets.0.conv2": "DownBlocks.Chain_8.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.2.resnets.1.conv1": "DownBlocks.Chain_9.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.2.resnets.1.conv2": "DownBlocks.Chain_9.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.2.downsamplers.0.conv": "DownBlocks.Chain_10.Downsample.Conv2d",
|
||||
"down_blocks.3.resnets.0.conv1": "DownBlocks.Chain_11.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.3.resnets.0.conv2": "DownBlocks.Chain_11.ResidualBlock.Chain.Conv2d",
|
||||
"down_blocks.3.resnets.1.conv1": "DownBlocks.Chain_12.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"down_blocks.3.resnets.1.conv2": "DownBlocks.Chain_12.ResidualBlock.Chain.Conv2d",
|
||||
"mid_block.resnets.0.conv1": "Sum.MiddleBlock.ResidualBlock_1.Chain.RangeAdapter2d.Conv2d",
|
||||
"mid_block.resnets.0.conv2": "Sum.MiddleBlock.ResidualBlock_1.Chain.Conv2d",
|
||||
"mid_block.resnets.1.conv1": "Sum.MiddleBlock.ResidualBlock_2.Chain.RangeAdapter2d.Conv2d",
|
||||
"mid_block.resnets.1.conv2": "Sum.MiddleBlock.ResidualBlock_2.Chain.Conv2d",
|
||||
"up_blocks.0.resnets.0.conv2": "UpBlocks.Chain_1.ResidualBlock.Chain.Conv2d",
|
||||
"up_blocks.0.resnets.1.conv2": "UpBlocks.Chain_2.ResidualBlock.Chain.Conv2d",
|
||||
"up_blocks.0.resnets.2.conv2": "UpBlocks.Chain_3.ResidualBlock.Chain.Conv2d",
|
||||
"up_blocks.0.upsamplers.0.conv": "UpBlocks.Chain_3.Upsample.Conv2d",
|
||||
"up_blocks.1.resnets.0.conv2": "UpBlocks.Chain_4.ResidualBlock.Chain.Conv2d",
|
||||
"up_blocks.1.resnets.1.conv2": "UpBlocks.Chain_5.ResidualBlock.Chain.Conv2d",
|
||||
"up_blocks.1.resnets.2.conv2": "UpBlocks.Chain_6.ResidualBlock.Chain.Conv2d",
|
||||
"up_blocks.1.upsamplers.0.conv": "UpBlocks.Chain_6.Upsample.Conv2d",
|
||||
"down_blocks.2.resnets.0.conv_shortcut": "DownBlocks.Chain_8.ResidualBlock.Conv2d",
|
||||
"down_blocks.2.attentions.0.proj_in": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"down_blocks.2.attentions.0.proj_out": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"down_blocks.2.attentions.1.proj_in": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"down_blocks.2.attentions.1.proj_out": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"mid_block.attentions.0.proj_in": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"mid_block.attentions.0.proj_out": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"up_blocks.1.attentions.0.proj_in": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"up_blocks.1.attentions.0.proj_out": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"up_blocks.1.attentions.1.proj_in": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"up_blocks.1.attentions.1.proj_out": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"up_blocks.1.attentions.2.proj_in": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_1.Conv2d",
|
||||
"up_blocks.1.attentions.2.proj_out": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_3.Conv2d",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm1": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm2": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm3": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm1": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm2": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm3": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm1": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm2": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm3": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.norm1": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.norm2": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.norm3": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.norm1": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.norm2": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.norm3": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.norm1": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.LayerNorm",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.norm2": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.LayerNorm",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.norm3": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.LayerNorm",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_q": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_k": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_v": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_q": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_q": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_k": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_v": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_q": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_q": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_k": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_v": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_q": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_q": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_q": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_q": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_k": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_q": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_q": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_1",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_k": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_2",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_v": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_1.SelfAttention.Distribute.Linear_3",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_q": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_1",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_k": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_v": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_k": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_v": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_k": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_v": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_k": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_v": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_v": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_k": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_2",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_v": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_2.Attention.Distribute.Linear_3",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.ff.net.0.proj": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.ff.net.0.proj": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"mid_block.attentions.0.transformer_blocks.0.ff.net.0.proj": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.ff.net.0.proj": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.ff.net.0.proj": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_1",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.ff.net.2": "DownBlocks.Chain_8.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.ff.net.2": "DownBlocks.Chain_9.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"mid_block.attentions.0.transformer_blocks.0.ff.net.2": "Sum.MiddleBlock.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.ff.net.2": "UpBlocks.Chain_4.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.ff.net.2": "UpBlocks.Chain_5.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.ff.net.2": "UpBlocks.Chain_6.CLIPLCrossAttention.Chain_2.CrossAttentionBlock.Residual_3.Linear_2",
|
||||
"up_blocks.0.resnets.0.norm1": "UpBlocks.Chain_1.ResidualBlock.Chain.GroupNorm_1",
|
||||
"up_blocks.0.resnets.1.norm1": "UpBlocks.Chain_2.ResidualBlock.Chain.GroupNorm_1",
|
||||
"up_blocks.0.resnets.2.norm1": "UpBlocks.Chain_3.ResidualBlock.Chain.GroupNorm_1",
|
||||
"up_blocks.1.resnets.0.norm1": "UpBlocks.Chain_4.ResidualBlock.Chain.GroupNorm_1",
|
||||
"up_blocks.1.resnets.1.norm1": "UpBlocks.Chain_5.ResidualBlock.Chain.GroupNorm_1",
|
||||
"up_blocks.0.resnets.0.conv1": "UpBlocks.Chain_1.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"up_blocks.0.resnets.1.conv1": "UpBlocks.Chain_2.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"up_blocks.0.resnets.2.conv1": "UpBlocks.Chain_3.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"up_blocks.1.resnets.0.conv1": "UpBlocks.Chain_4.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"up_blocks.1.resnets.1.conv1": "UpBlocks.Chain_5.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"up_blocks.0.resnets.0.conv_shortcut": "UpBlocks.Chain_1.ResidualBlock.Conv2d",
|
||||
"up_blocks.0.resnets.1.conv_shortcut": "UpBlocks.Chain_2.ResidualBlock.Conv2d",
|
||||
"up_blocks.0.resnets.2.conv_shortcut": "UpBlocks.Chain_3.ResidualBlock.Conv2d",
|
||||
"up_blocks.1.resnets.0.conv_shortcut": "UpBlocks.Chain_4.ResidualBlock.Conv2d",
|
||||
"up_blocks.1.resnets.1.conv_shortcut": "UpBlocks.Chain_5.ResidualBlock.Conv2d",
|
||||
"up_blocks.1.resnets.2.norm1": "UpBlocks.Chain_6.ResidualBlock.Chain.GroupNorm_1",
|
||||
"up_blocks.2.resnets.0.norm1": "UpBlocks.Chain_7.ResidualBlock.Chain.GroupNorm_1",
|
||||
"up_blocks.1.resnets.2.conv1": "UpBlocks.Chain_6.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"up_blocks.1.resnets.2.conv_shortcut": "UpBlocks.Chain_6.ResidualBlock.Conv2d",
|
||||
"up_blocks.2.resnets.0.conv1": "UpBlocks.Chain_7.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"up_blocks.2.resnets.0.conv_shortcut": "UpBlocks.Chain_7.ResidualBlock.Conv2d",
|
||||
"up_blocks.2.resnets.1.conv1": "UpBlocks.Chain_8.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"up_blocks.2.resnets.1.conv_shortcut": "UpBlocks.Chain_8.ResidualBlock.Conv2d",
|
||||
"up_blocks.2.resnets.2.norm1": "UpBlocks.Chain_9.ResidualBlock.Chain.GroupNorm_1",
|
||||
"up_blocks.3.resnets.0.norm1": "UpBlocks.Chain_10.ResidualBlock.Chain.GroupNorm_1",
|
||||
"up_blocks.2.resnets.2.conv1": "UpBlocks.Chain_9.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"up_blocks.2.resnets.2.conv_shortcut": "UpBlocks.Chain_9.ResidualBlock.Conv2d",
|
||||
"up_blocks.3.resnets.0.conv1": "UpBlocks.Chain_10.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"up_blocks.3.resnets.0.conv_shortcut": "UpBlocks.Chain_10.ResidualBlock.Conv2d",
|
||||
"up_blocks.3.resnets.1.conv1": "UpBlocks.Chain_11.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"up_blocks.3.resnets.2.conv1": "UpBlocks.Chain_12.ResidualBlock.Chain.RangeAdapter2d.Conv2d",
|
||||
"up_blocks.3.resnets.1.conv_shortcut": "UpBlocks.Chain_11.ResidualBlock.Conv2d",
|
||||
"up_blocks.3.resnets.2.conv_shortcut": "UpBlocks.Chain_12.ResidualBlock.Conv2d",
|
||||
"conv_out": "Chain.Conv2d"
|
||||
},
|
||||
"source_aliases": {}
|
||||
}
|
@ -0,0 +1,130 @@
|
||||
{
|
||||
"mapping": {
|
||||
"encoder.conv_in": "encoder.conv_in",
|
||||
"encoder.down.0.block.0.norm1": "encoder.down_blocks.0.resnets.0.norm1",
|
||||
"encoder.down.0.block.0.conv1": "encoder.down_blocks.0.resnets.0.conv1",
|
||||
"encoder.down.0.block.0.norm2": "encoder.down_blocks.0.resnets.0.norm2",
|
||||
"encoder.down.0.block.0.conv2": "encoder.down_blocks.0.resnets.0.conv2",
|
||||
"encoder.down.0.block.1.norm1": "encoder.down_blocks.0.resnets.1.norm1",
|
||||
"encoder.down.0.block.1.conv1": "encoder.down_blocks.0.resnets.1.conv1",
|
||||
"encoder.down.0.block.1.norm2": "encoder.down_blocks.0.resnets.1.norm2",
|
||||
"encoder.down.0.block.1.conv2": "encoder.down_blocks.0.resnets.1.conv2",
|
||||
"encoder.down.0.downsample.conv": "encoder.down_blocks.0.downsamplers.0.conv",
|
||||
"encoder.down.1.block.0.norm1": "encoder.down_blocks.1.resnets.0.norm1",
|
||||
"encoder.down.1.block.0.conv1": "encoder.down_blocks.1.resnets.0.conv1",
|
||||
"encoder.down.1.block.0.norm2": "encoder.down_blocks.1.resnets.0.norm2",
|
||||
"encoder.down.1.block.0.conv2": "encoder.down_blocks.1.resnets.0.conv2",
|
||||
"encoder.down.1.block.0.nin_shortcut": "encoder.down_blocks.1.resnets.0.conv_shortcut",
|
||||
"encoder.down.1.block.1.norm1": "encoder.down_blocks.1.resnets.1.norm1",
|
||||
"encoder.down.1.block.1.conv1": "encoder.down_blocks.1.resnets.1.conv1",
|
||||
"encoder.down.1.block.1.norm2": "encoder.down_blocks.1.resnets.1.norm2",
|
||||
"encoder.down.1.block.1.conv2": "encoder.down_blocks.1.resnets.1.conv2",
|
||||
"encoder.down.1.downsample.conv": "encoder.down_blocks.1.downsamplers.0.conv",
|
||||
"encoder.down.2.block.0.norm1": "encoder.down_blocks.2.resnets.0.norm1",
|
||||
"encoder.down.2.block.0.conv1": "encoder.down_blocks.2.resnets.0.conv1",
|
||||
"encoder.down.2.block.0.norm2": "encoder.down_blocks.2.resnets.0.norm2",
|
||||
"encoder.down.2.block.0.conv2": "encoder.down_blocks.2.resnets.0.conv2",
|
||||
"encoder.down.2.block.0.nin_shortcut": "encoder.down_blocks.2.resnets.0.conv_shortcut",
|
||||
"encoder.down.2.block.1.norm1": "encoder.down_blocks.2.resnets.1.norm1",
|
||||
"encoder.down.2.block.1.conv1": "encoder.down_blocks.2.resnets.1.conv1",
|
||||
"encoder.down.2.block.1.norm2": "encoder.down_blocks.2.resnets.1.norm2",
|
||||
"encoder.down.2.block.1.conv2": "encoder.down_blocks.2.resnets.1.conv2",
|
||||
"encoder.down.2.downsample.conv": "encoder.down_blocks.2.downsamplers.0.conv",
|
||||
"encoder.down.3.block.0.norm1": "encoder.down_blocks.3.resnets.0.norm1",
|
||||
"encoder.down.3.block.0.conv1": "encoder.down_blocks.3.resnets.0.conv1",
|
||||
"encoder.down.3.block.0.norm2": "encoder.down_blocks.3.resnets.0.norm2",
|
||||
"encoder.down.3.block.0.conv2": "encoder.down_blocks.3.resnets.0.conv2",
|
||||
"encoder.down.3.block.1.norm1": "encoder.down_blocks.3.resnets.1.norm1",
|
||||
"encoder.down.3.block.1.conv1": "encoder.down_blocks.3.resnets.1.conv1",
|
||||
"encoder.down.3.block.1.norm2": "encoder.down_blocks.3.resnets.1.norm2",
|
||||
"encoder.down.3.block.1.conv2": "encoder.down_blocks.3.resnets.1.conv2",
|
||||
"encoder.mid.block_1.norm1": "encoder.mid_block.resnets.0.norm1",
|
||||
"encoder.mid.block_1.conv1": "encoder.mid_block.resnets.0.conv1",
|
||||
"encoder.mid.block_1.norm2": "encoder.mid_block.resnets.0.norm2",
|
||||
"encoder.mid.block_1.conv2": "encoder.mid_block.resnets.0.conv2",
|
||||
"encoder.mid.attn_1.norm": "encoder.mid_block.attentions.0.group_norm",
|
||||
"encoder.mid.attn_1.q": "encoder.mid_block.attentions.0.to_q",
|
||||
"encoder.mid.attn_1.k": "encoder.mid_block.attentions.0.to_k",
|
||||
"encoder.mid.attn_1.v": "encoder.mid_block.attentions.0.to_v",
|
||||
"encoder.mid.attn_1.proj_out": "encoder.mid_block.attentions.0.to_out.0",
|
||||
"encoder.mid.block_2.norm1": "encoder.mid_block.resnets.1.norm1",
|
||||
"encoder.mid.block_2.conv1": "encoder.mid_block.resnets.1.conv1",
|
||||
"encoder.mid.block_2.norm2": "encoder.mid_block.resnets.1.norm2",
|
||||
"encoder.mid.block_2.conv2": "encoder.mid_block.resnets.1.conv2",
|
||||
"encoder.norm_out": "encoder.conv_norm_out",
|
||||
"encoder.conv_out": "encoder.conv_out",
|
||||
"quant_conv": "quant_conv",
|
||||
"post_quant_conv": "post_quant_conv",
|
||||
"decoder.conv_in": "decoder.conv_in",
|
||||
"decoder.mid.block_1.norm1": "decoder.mid_block.resnets.0.norm1",
|
||||
"decoder.mid.block_1.conv1": "decoder.mid_block.resnets.0.conv1",
|
||||
"decoder.mid.block_1.norm2": "decoder.mid_block.resnets.0.norm2",
|
||||
"decoder.mid.block_1.conv2": "decoder.mid_block.resnets.0.conv2",
|
||||
"decoder.mid.attn_1.norm": "decoder.mid_block.attentions.0.group_norm",
|
||||
"decoder.mid.attn_1.q": "decoder.mid_block.attentions.0.to_q",
|
||||
"decoder.mid.attn_1.k": "decoder.mid_block.attentions.0.to_k",
|
||||
"decoder.mid.attn_1.v": "decoder.mid_block.attentions.0.to_v",
|
||||
"decoder.mid.attn_1.proj_out": "decoder.mid_block.attentions.0.to_out.0",
|
||||
"decoder.mid.block_2.norm1": "decoder.mid_block.resnets.1.norm1",
|
||||
"decoder.mid.block_2.conv1": "decoder.mid_block.resnets.1.conv1",
|
||||
"decoder.mid.block_2.norm2": "decoder.mid_block.resnets.1.norm2",
|
||||
"decoder.mid.block_2.conv2": "decoder.mid_block.resnets.1.conv2",
|
||||
"decoder.up.3.block.0.norm1": "decoder.up_blocks.0.resnets.0.norm1",
|
||||
"decoder.up.3.block.0.conv1": "decoder.up_blocks.0.resnets.0.conv1",
|
||||
"decoder.up.3.block.0.norm2": "decoder.up_blocks.0.resnets.0.norm2",
|
||||
"decoder.up.3.block.0.conv2": "decoder.up_blocks.0.resnets.0.conv2",
|
||||
"decoder.up.3.block.1.norm1": "decoder.up_blocks.0.resnets.1.norm1",
|
||||
"decoder.up.3.block.1.conv1": "decoder.up_blocks.0.resnets.1.conv1",
|
||||
"decoder.up.3.block.1.norm2": "decoder.up_blocks.0.resnets.1.norm2",
|
||||
"decoder.up.3.block.1.conv2": "decoder.up_blocks.0.resnets.1.conv2",
|
||||
"decoder.up.3.block.2.norm1": "decoder.up_blocks.0.resnets.2.norm1",
|
||||
"decoder.up.3.block.2.conv1": "decoder.up_blocks.0.resnets.2.conv1",
|
||||
"decoder.up.3.block.2.norm2": "decoder.up_blocks.0.resnets.2.norm2",
|
||||
"decoder.up.3.block.2.conv2": "decoder.up_blocks.0.resnets.2.conv2",
|
||||
"decoder.up.3.upsample.conv": "decoder.up_blocks.0.upsamplers.0.conv",
|
||||
"decoder.up.2.block.0.norm1": "decoder.up_blocks.1.resnets.0.norm1",
|
||||
"decoder.up.2.block.0.conv1": "decoder.up_blocks.1.resnets.0.conv1",
|
||||
"decoder.up.2.block.0.norm2": "decoder.up_blocks.1.resnets.0.norm2",
|
||||
"decoder.up.2.block.0.conv2": "decoder.up_blocks.1.resnets.0.conv2",
|
||||
"decoder.up.2.block.1.norm1": "decoder.up_blocks.1.resnets.1.norm1",
|
||||
"decoder.up.2.block.1.conv1": "decoder.up_blocks.1.resnets.1.conv1",
|
||||
"decoder.up.2.block.1.norm2": "decoder.up_blocks.1.resnets.1.norm2",
|
||||
"decoder.up.2.block.1.conv2": "decoder.up_blocks.1.resnets.1.conv2",
|
||||
"decoder.up.2.block.2.norm1": "decoder.up_blocks.1.resnets.2.norm1",
|
||||
"decoder.up.2.block.2.conv1": "decoder.up_blocks.1.resnets.2.conv1",
|
||||
"decoder.up.2.block.2.norm2": "decoder.up_blocks.1.resnets.2.norm2",
|
||||
"decoder.up.2.block.2.conv2": "decoder.up_blocks.1.resnets.2.conv2",
|
||||
"decoder.up.2.upsample.conv": "decoder.up_blocks.1.upsamplers.0.conv",
|
||||
"decoder.up.1.block.0.norm1": "decoder.up_blocks.2.resnets.0.norm1",
|
||||
"decoder.up.1.block.0.conv1": "decoder.up_blocks.2.resnets.0.conv1",
|
||||
"decoder.up.1.block.0.norm2": "decoder.up_blocks.2.resnets.0.norm2",
|
||||
"decoder.up.1.block.0.conv2": "decoder.up_blocks.2.resnets.0.conv2",
|
||||
"decoder.up.1.block.0.nin_shortcut": "decoder.up_blocks.2.resnets.0.conv_shortcut",
|
||||
"decoder.up.1.block.1.norm1": "decoder.up_blocks.2.resnets.1.norm1",
|
||||
"decoder.up.1.block.1.conv1": "decoder.up_blocks.2.resnets.1.conv1",
|
||||
"decoder.up.1.block.1.norm2": "decoder.up_blocks.2.resnets.1.norm2",
|
||||
"decoder.up.1.block.1.conv2": "decoder.up_blocks.2.resnets.1.conv2",
|
||||
"decoder.up.1.block.2.norm1": "decoder.up_blocks.2.resnets.2.norm1",
|
||||
"decoder.up.1.block.2.conv1": "decoder.up_blocks.2.resnets.2.conv1",
|
||||
"decoder.up.1.block.2.norm2": "decoder.up_blocks.2.resnets.2.norm2",
|
||||
"decoder.up.1.block.2.conv2": "decoder.up_blocks.2.resnets.2.conv2",
|
||||
"decoder.up.1.upsample.conv": "decoder.up_blocks.2.upsamplers.0.conv",
|
||||
"decoder.up.0.block.0.norm1": "decoder.up_blocks.3.resnets.0.norm1",
|
||||
"decoder.up.0.block.0.conv1": "decoder.up_blocks.3.resnets.0.conv1",
|
||||
"decoder.up.0.block.0.norm2": "decoder.up_blocks.3.resnets.0.norm2",
|
||||
"decoder.up.0.block.0.conv2": "decoder.up_blocks.3.resnets.0.conv2",
|
||||
"decoder.up.0.block.0.nin_shortcut": "decoder.up_blocks.3.resnets.0.conv_shortcut",
|
||||
"decoder.up.0.block.1.norm1": "decoder.up_blocks.3.resnets.1.norm1",
|
||||
"decoder.up.0.block.1.conv1": "decoder.up_blocks.3.resnets.1.conv1",
|
||||
"decoder.up.0.block.1.norm2": "decoder.up_blocks.3.resnets.1.norm2",
|
||||
"decoder.up.0.block.1.conv2": "decoder.up_blocks.3.resnets.1.conv2",
|
||||
"decoder.up.0.block.2.norm1": "decoder.up_blocks.3.resnets.2.norm1",
|
||||
"decoder.up.0.block.2.conv1": "decoder.up_blocks.3.resnets.2.conv1",
|
||||
"decoder.up.0.block.2.norm2": "decoder.up_blocks.3.resnets.2.norm2",
|
||||
"decoder.up.0.block.2.conv2": "decoder.up_blocks.3.resnets.2.conv2",
|
||||
"decoder.norm_out": "decoder.conv_norm_out",
|
||||
"decoder.conv_out": "decoder.conv_out"
|
||||
},
|
||||
"source_aliases": {},
|
||||
"ignorable_prefixes": []
|
||||
}
|
@ -0,0 +1,130 @@
|
||||
{
|
||||
"mapping": {
|
||||
"encoder.conv_in": "encoder.conv_in",
|
||||
"encoder.down_blocks.0.resnets.0.norm1": "encoder.down.0.block.0.norm1",
|
||||
"encoder.down_blocks.0.resnets.0.conv1": "encoder.down.0.block.0.conv1",
|
||||
"encoder.down_blocks.0.resnets.0.norm2": "encoder.down.0.block.0.norm2",
|
||||
"encoder.down_blocks.0.resnets.0.conv2": "encoder.down.0.block.0.conv2",
|
||||
"encoder.down_blocks.0.resnets.1.norm1": "encoder.down.0.block.1.norm1",
|
||||
"encoder.down_blocks.0.resnets.1.conv1": "encoder.down.0.block.1.conv1",
|
||||
"encoder.down_blocks.0.resnets.1.norm2": "encoder.down.0.block.1.norm2",
|
||||
"encoder.down_blocks.0.resnets.1.conv2": "encoder.down.0.block.1.conv2",
|
||||
"encoder.down_blocks.0.downsamplers.0.conv": "encoder.down.0.downsample.conv",
|
||||
"encoder.down_blocks.1.resnets.0.norm1": "encoder.down.1.block.0.norm1",
|
||||
"encoder.down_blocks.1.resnets.0.conv1": "encoder.down.1.block.0.conv1",
|
||||
"encoder.down_blocks.1.resnets.0.norm2": "encoder.down.1.block.0.norm2",
|
||||
"encoder.down_blocks.1.resnets.0.conv2": "encoder.down.1.block.0.conv2",
|
||||
"encoder.down_blocks.1.resnets.0.conv_shortcut": "encoder.down.1.block.0.nin_shortcut",
|
||||
"encoder.down_blocks.1.resnets.1.norm1": "encoder.down.1.block.1.norm1",
|
||||
"encoder.down_blocks.1.resnets.1.conv1": "encoder.down.1.block.1.conv1",
|
||||
"encoder.down_blocks.1.resnets.1.norm2": "encoder.down.1.block.1.norm2",
|
||||
"encoder.down_blocks.1.resnets.1.conv2": "encoder.down.1.block.1.conv2",
|
||||
"encoder.down_blocks.1.downsamplers.0.conv": "encoder.down.1.downsample.conv",
|
||||
"encoder.down_blocks.2.resnets.0.norm1": "encoder.down.2.block.0.norm1",
|
||||
"encoder.down_blocks.2.resnets.0.conv1": "encoder.down.2.block.0.conv1",
|
||||
"encoder.down_blocks.2.resnets.0.norm2": "encoder.down.2.block.0.norm2",
|
||||
"encoder.down_blocks.2.resnets.0.conv2": "encoder.down.2.block.0.conv2",
|
||||
"encoder.down_blocks.2.resnets.0.conv_shortcut": "encoder.down.2.block.0.nin_shortcut",
|
||||
"encoder.down_blocks.2.resnets.1.norm1": "encoder.down.2.block.1.norm1",
|
||||
"encoder.down_blocks.2.resnets.1.conv1": "encoder.down.2.block.1.conv1",
|
||||
"encoder.down_blocks.2.resnets.1.norm2": "encoder.down.2.block.1.norm2",
|
||||
"encoder.down_blocks.2.resnets.1.conv2": "encoder.down.2.block.1.conv2",
|
||||
"encoder.down_blocks.2.downsamplers.0.conv": "encoder.down.2.downsample.conv",
|
||||
"encoder.down_blocks.3.resnets.0.norm1": "encoder.down.3.block.0.norm1",
|
||||
"encoder.down_blocks.3.resnets.0.conv1": "encoder.down.3.block.0.conv1",
|
||||
"encoder.down_blocks.3.resnets.0.norm2": "encoder.down.3.block.0.norm2",
|
||||
"encoder.down_blocks.3.resnets.0.conv2": "encoder.down.3.block.0.conv2",
|
||||
"encoder.down_blocks.3.resnets.1.norm1": "encoder.down.3.block.1.norm1",
|
||||
"encoder.down_blocks.3.resnets.1.conv1": "encoder.down.3.block.1.conv1",
|
||||
"encoder.down_blocks.3.resnets.1.norm2": "encoder.down.3.block.1.norm2",
|
||||
"encoder.down_blocks.3.resnets.1.conv2": "encoder.down.3.block.1.conv2",
|
||||
"encoder.mid_block.resnets.0.norm1": "encoder.mid.block_1.norm1",
|
||||
"encoder.mid_block.resnets.0.conv1": "encoder.mid.block_1.conv1",
|
||||
"encoder.mid_block.resnets.0.norm2": "encoder.mid.block_1.norm2",
|
||||
"encoder.mid_block.resnets.0.conv2": "encoder.mid.block_1.conv2",
|
||||
"encoder.mid_block.attentions.0.group_norm": "encoder.mid.attn_1.norm",
|
||||
"encoder.mid_block.attentions.0.to_q": "encoder.mid.attn_1.q",
|
||||
"encoder.mid_block.attentions.0.to_k": "encoder.mid.attn_1.k",
|
||||
"encoder.mid_block.attentions.0.to_v": "encoder.mid.attn_1.v",
|
||||
"encoder.mid_block.attentions.0.to_out.0": "encoder.mid.attn_1.proj_out",
|
||||
"encoder.mid_block.resnets.1.norm1": "encoder.mid.block_2.norm1",
|
||||
"encoder.mid_block.resnets.1.conv1": "encoder.mid.block_2.conv1",
|
||||
"encoder.mid_block.resnets.1.norm2": "encoder.mid.block_2.norm2",
|
||||
"encoder.mid_block.resnets.1.conv2": "encoder.mid.block_2.conv2",
|
||||
"encoder.conv_norm_out": "encoder.norm_out",
|
||||
"encoder.conv_out": "encoder.conv_out",
|
||||
"quant_conv": "quant_conv",
|
||||
"post_quant_conv": "post_quant_conv",
|
||||
"decoder.conv_in": "decoder.conv_in",
|
||||
"decoder.mid_block.resnets.0.norm1": "decoder.mid.block_1.norm1",
|
||||
"decoder.mid_block.resnets.0.conv1": "decoder.mid.block_1.conv1",
|
||||
"decoder.mid_block.resnets.0.norm2": "decoder.mid.block_1.norm2",
|
||||
"decoder.mid_block.resnets.0.conv2": "decoder.mid.block_1.conv2",
|
||||
"decoder.mid_block.attentions.0.group_norm": "decoder.mid.attn_1.norm",
|
||||
"decoder.mid_block.attentions.0.to_q": "decoder.mid.attn_1.q",
|
||||
"decoder.mid_block.attentions.0.to_k": "decoder.mid.attn_1.k",
|
||||
"decoder.mid_block.attentions.0.to_v": "decoder.mid.attn_1.v",
|
||||
"decoder.mid_block.attentions.0.to_out.0": "decoder.mid.attn_1.proj_out",
|
||||
"decoder.mid_block.resnets.1.norm1": "decoder.mid.block_2.norm1",
|
||||
"decoder.mid_block.resnets.1.conv1": "decoder.mid.block_2.conv1",
|
||||
"decoder.mid_block.resnets.1.norm2": "decoder.mid.block_2.norm2",
|
||||
"decoder.mid_block.resnets.1.conv2": "decoder.mid.block_2.conv2",
|
||||
"decoder.up_blocks.0.resnets.0.norm1": "decoder.up.3.block.0.norm1",
|
||||
"decoder.up_blocks.0.resnets.0.conv1": "decoder.up.3.block.0.conv1",
|
||||
"decoder.up_blocks.0.resnets.0.norm2": "decoder.up.3.block.0.norm2",
|
||||
"decoder.up_blocks.0.resnets.0.conv2": "decoder.up.3.block.0.conv2",
|
||||
"decoder.up_blocks.0.resnets.1.norm1": "decoder.up.3.block.1.norm1",
|
||||
"decoder.up_blocks.0.resnets.1.conv1": "decoder.up.3.block.1.conv1",
|
||||
"decoder.up_blocks.0.resnets.1.norm2": "decoder.up.3.block.1.norm2",
|
||||
"decoder.up_blocks.0.resnets.1.conv2": "decoder.up.3.block.1.conv2",
|
||||
"decoder.up_blocks.0.resnets.2.norm1": "decoder.up.3.block.2.norm1",
|
||||
"decoder.up_blocks.0.resnets.2.conv1": "decoder.up.3.block.2.conv1",
|
||||
"decoder.up_blocks.0.resnets.2.norm2": "decoder.up.3.block.2.norm2",
|
||||
"decoder.up_blocks.0.resnets.2.conv2": "decoder.up.3.block.2.conv2",
|
||||
"decoder.up_blocks.0.upsamplers.0.conv": "decoder.up.3.upsample.conv",
|
||||
"decoder.up_blocks.1.resnets.0.norm1": "decoder.up.2.block.0.norm1",
|
||||
"decoder.up_blocks.1.resnets.0.conv1": "decoder.up.2.block.0.conv1",
|
||||
"decoder.up_blocks.1.resnets.0.norm2": "decoder.up.2.block.0.norm2",
|
||||
"decoder.up_blocks.1.resnets.0.conv2": "decoder.up.2.block.0.conv2",
|
||||
"decoder.up_blocks.1.resnets.1.norm1": "decoder.up.2.block.1.norm1",
|
||||
"decoder.up_blocks.1.resnets.1.conv1": "decoder.up.2.block.1.conv1",
|
||||
"decoder.up_blocks.1.resnets.1.norm2": "decoder.up.2.block.1.norm2",
|
||||
"decoder.up_blocks.1.resnets.1.conv2": "decoder.up.2.block.1.conv2",
|
||||
"decoder.up_blocks.1.resnets.2.norm1": "decoder.up.2.block.2.norm1",
|
||||
"decoder.up_blocks.1.resnets.2.conv1": "decoder.up.2.block.2.conv1",
|
||||
"decoder.up_blocks.1.resnets.2.norm2": "decoder.up.2.block.2.norm2",
|
||||
"decoder.up_blocks.1.resnets.2.conv2": "decoder.up.2.block.2.conv2",
|
||||
"decoder.up_blocks.1.upsamplers.0.conv": "decoder.up.2.upsample.conv",
|
||||
"decoder.up_blocks.2.resnets.0.norm1": "decoder.up.1.block.0.norm1",
|
||||
"decoder.up_blocks.2.resnets.0.conv1": "decoder.up.1.block.0.conv1",
|
||||
"decoder.up_blocks.2.resnets.0.norm2": "decoder.up.1.block.0.norm2",
|
||||
"decoder.up_blocks.2.resnets.0.conv2": "decoder.up.1.block.0.conv2",
|
||||
"decoder.up_blocks.2.resnets.0.conv_shortcut": "decoder.up.1.block.0.nin_shortcut",
|
||||
"decoder.up_blocks.2.resnets.1.norm1": "decoder.up.1.block.1.norm1",
|
||||
"decoder.up_blocks.2.resnets.1.conv1": "decoder.up.1.block.1.conv1",
|
||||
"decoder.up_blocks.2.resnets.1.norm2": "decoder.up.1.block.1.norm2",
|
||||
"decoder.up_blocks.2.resnets.1.conv2": "decoder.up.1.block.1.conv2",
|
||||
"decoder.up_blocks.2.resnets.2.norm1": "decoder.up.1.block.2.norm1",
|
||||
"decoder.up_blocks.2.resnets.2.conv1": "decoder.up.1.block.2.conv1",
|
||||
"decoder.up_blocks.2.resnets.2.norm2": "decoder.up.1.block.2.norm2",
|
||||
"decoder.up_blocks.2.resnets.2.conv2": "decoder.up.1.block.2.conv2",
|
||||
"decoder.up_blocks.2.upsamplers.0.conv": "decoder.up.1.upsample.conv",
|
||||
"decoder.up_blocks.3.resnets.0.norm1": "decoder.up.0.block.0.norm1",
|
||||
"decoder.up_blocks.3.resnets.0.conv1": "decoder.up.0.block.0.conv1",
|
||||
"decoder.up_blocks.3.resnets.0.norm2": "decoder.up.0.block.0.norm2",
|
||||
"decoder.up_blocks.3.resnets.0.conv2": "decoder.up.0.block.0.conv2",
|
||||
"decoder.up_blocks.3.resnets.0.conv_shortcut": "decoder.up.0.block.0.nin_shortcut",
|
||||
"decoder.up_blocks.3.resnets.1.norm1": "decoder.up.0.block.1.norm1",
|
||||
"decoder.up_blocks.3.resnets.1.conv1": "decoder.up.0.block.1.conv1",
|
||||
"decoder.up_blocks.3.resnets.1.norm2": "decoder.up.0.block.1.norm2",
|
||||
"decoder.up_blocks.3.resnets.1.conv2": "decoder.up.0.block.1.conv2",
|
||||
"decoder.up_blocks.3.resnets.2.norm1": "decoder.up.0.block.2.norm1",
|
||||
"decoder.up_blocks.3.resnets.2.conv1": "decoder.up.0.block.2.conv1",
|
||||
"decoder.up_blocks.3.resnets.2.norm2": "decoder.up.0.block.2.norm2",
|
||||
"decoder.up_blocks.3.resnets.2.conv2": "decoder.up.0.block.2.conv2",
|
||||
"decoder.conv_norm_out": "decoder.norm_out",
|
||||
"decoder.conv_out": "decoder.conv_out"
|
||||
},
|
||||
"source_aliases": {},
|
||||
"ignorable_prefixes": []
|
||||
}
|
@ -0,0 +1,149 @@
|
||||
{
|
||||
"ignorable_prefixes": [],
|
||||
"mapping": {
|
||||
"encoder.conv_in": "Encoder.Conv2d",
|
||||
"encoder.down_blocks.0.resnets.0.norm1": "Encoder.Chain_1.Chain_1.Resnet_1.Chain.GroupNorm_1",
|
||||
"encoder.down_blocks.0.resnets.0.norm2": "Encoder.Chain_1.Chain_1.Resnet_1.Chain.GroupNorm_2",
|
||||
"encoder.down_blocks.0.resnets.1.norm1": "Encoder.Chain_1.Chain_1.Resnet_2.Chain.GroupNorm_1",
|
||||
"encoder.down_blocks.0.resnets.1.norm2": "Encoder.Chain_1.Chain_1.Resnet_2.Chain.GroupNorm_2",
|
||||
"encoder.down_blocks.1.resnets.0.norm1": "Encoder.Chain_1.Chain_2.Resnet_1.Chain.GroupNorm_1",
|
||||
"decoder.up_blocks.3.resnets.0.norm2": "Decoder.Chain_1.Chain_5.Resnet_1.Chain.GroupNorm_2",
|
||||
"decoder.up_blocks.3.resnets.1.norm1": "Decoder.Chain_1.Chain_5.Resnet_2.Chain.GroupNorm_1",
|
||||
"decoder.up_blocks.3.resnets.1.norm2": "Decoder.Chain_1.Chain_5.Resnet_2.Chain.GroupNorm_2",
|
||||
"decoder.up_blocks.3.resnets.2.norm1": "Decoder.Chain_1.Chain_5.Resnet_3.Chain.GroupNorm_1",
|
||||
"decoder.up_blocks.3.resnets.2.norm2": "Decoder.Chain_1.Chain_5.Resnet_3.Chain.GroupNorm_2",
|
||||
"decoder.conv_norm_out": "Decoder.Chain_2.GroupNorm",
|
||||
"encoder.down_blocks.0.resnets.0.conv1": "Encoder.Chain_1.Chain_1.Resnet_1.Chain.Conv2d_1",
|
||||
"encoder.down_blocks.0.resnets.0.conv2": "Encoder.Chain_1.Chain_1.Resnet_1.Chain.Conv2d_2",
|
||||
"encoder.down_blocks.0.resnets.1.conv1": "Encoder.Chain_1.Chain_1.Resnet_2.Chain.Conv2d_1",
|
||||
"encoder.down_blocks.0.resnets.1.conv2": "Encoder.Chain_1.Chain_1.Resnet_2.Chain.Conv2d_2",
|
||||
"encoder.down_blocks.0.downsamplers.0.conv": "Encoder.Chain_1.Chain_1.Downsample.Conv2d",
|
||||
"decoder.up_blocks.3.resnets.0.conv2": "Decoder.Chain_1.Chain_5.Resnet_1.Chain.Conv2d_2",
|
||||
"decoder.up_blocks.3.resnets.1.conv1": "Decoder.Chain_1.Chain_5.Resnet_2.Chain.Conv2d_1",
|
||||
"decoder.up_blocks.3.resnets.1.conv2": "Decoder.Chain_1.Chain_5.Resnet_2.Chain.Conv2d_2",
|
||||
"decoder.up_blocks.3.resnets.2.conv1": "Decoder.Chain_1.Chain_5.Resnet_3.Chain.Conv2d_1",
|
||||
"decoder.up_blocks.3.resnets.2.conv2": "Decoder.Chain_1.Chain_5.Resnet_3.Chain.Conv2d_2",
|
||||
"encoder.down_blocks.1.resnets.0.conv1": "Encoder.Chain_1.Chain_2.Resnet_1.Chain.Conv2d_1",
|
||||
"encoder.down_blocks.1.resnets.0.norm2": "Encoder.Chain_1.Chain_2.Resnet_1.Chain.GroupNorm_2",
|
||||
"encoder.down_blocks.1.resnets.1.norm1": "Encoder.Chain_1.Chain_2.Resnet_2.Chain.GroupNorm_1",
|
||||
"encoder.down_blocks.1.resnets.1.norm2": "Encoder.Chain_1.Chain_2.Resnet_2.Chain.GroupNorm_2",
|
||||
"encoder.down_blocks.2.resnets.0.norm1": "Encoder.Chain_1.Chain_3.Resnet_1.Chain.GroupNorm_1",
|
||||
"decoder.up_blocks.2.resnets.0.norm2": "Decoder.Chain_1.Chain_4.Resnet_1.Chain.GroupNorm_2",
|
||||
"decoder.up_blocks.2.resnets.1.norm1": "Decoder.Chain_1.Chain_4.Resnet_2.Chain.GroupNorm_1",
|
||||
"decoder.up_blocks.2.resnets.1.norm2": "Decoder.Chain_1.Chain_4.Resnet_2.Chain.GroupNorm_2",
|
||||
"decoder.up_blocks.2.resnets.2.norm1": "Decoder.Chain_1.Chain_4.Resnet_3.Chain.GroupNorm_1",
|
||||
"decoder.up_blocks.2.resnets.2.norm2": "Decoder.Chain_1.Chain_4.Resnet_3.Chain.GroupNorm_2",
|
||||
"decoder.up_blocks.3.resnets.0.norm1": "Decoder.Chain_1.Chain_5.Resnet_1.Chain.GroupNorm_1",
|
||||
"encoder.down_blocks.1.resnets.0.conv2": "Encoder.Chain_1.Chain_2.Resnet_1.Chain.Conv2d_2",
|
||||
"encoder.down_blocks.1.resnets.1.conv1": "Encoder.Chain_1.Chain_2.Resnet_2.Chain.Conv2d_1",
|
||||
"encoder.down_blocks.1.resnets.1.conv2": "Encoder.Chain_1.Chain_2.Resnet_2.Chain.Conv2d_2",
|
||||
"encoder.down_blocks.1.downsamplers.0.conv": "Encoder.Chain_1.Chain_2.Downsample.Conv2d",
|
||||
"decoder.up_blocks.2.resnets.0.conv2": "Decoder.Chain_1.Chain_4.Resnet_1.Chain.Conv2d_2",
|
||||
"decoder.up_blocks.2.resnets.1.conv1": "Decoder.Chain_1.Chain_4.Resnet_2.Chain.Conv2d_1",
|
||||
"decoder.up_blocks.2.resnets.1.conv2": "Decoder.Chain_1.Chain_4.Resnet_2.Chain.Conv2d_2",
|
||||
"decoder.up_blocks.2.resnets.2.conv1": "Decoder.Chain_1.Chain_4.Resnet_3.Chain.Conv2d_1",
|
||||
"decoder.up_blocks.2.resnets.2.conv2": "Decoder.Chain_1.Chain_4.Resnet_3.Chain.Conv2d_2",
|
||||
"decoder.up_blocks.2.upsamplers.0.conv": "Decoder.Chain_1.Chain_4.Upsample.Conv2d",
|
||||
"encoder.down_blocks.1.resnets.0.conv_shortcut": "Encoder.Chain_1.Chain_2.Resnet_1.Conv2d",
|
||||
"encoder.down_blocks.2.resnets.0.conv1": "Encoder.Chain_1.Chain_3.Resnet_1.Chain.Conv2d_1",
|
||||
"encoder.down_blocks.2.resnets.0.norm2": "Encoder.Chain_1.Chain_3.Resnet_1.Chain.GroupNorm_2",
|
||||
"encoder.down_blocks.2.resnets.1.norm1": "Encoder.Chain_1.Chain_3.Resnet_2.Chain.GroupNorm_1",
|
||||
"encoder.down_blocks.2.resnets.1.norm2": "Encoder.Chain_1.Chain_3.Resnet_2.Chain.GroupNorm_2",
|
||||
"encoder.down_blocks.3.resnets.0.norm1": "Encoder.Chain_1.Chain_4.Resnet_1.Chain.GroupNorm_1",
|
||||
"encoder.down_blocks.3.resnets.0.norm2": "Encoder.Chain_1.Chain_4.Resnet_1.Chain.GroupNorm_2",
|
||||
"encoder.down_blocks.3.resnets.1.norm1": "Encoder.Chain_1.Chain_4.Resnet_2.Chain.GroupNorm_1",
|
||||
"encoder.down_blocks.3.resnets.1.norm2": "Encoder.Chain_1.Chain_4.Resnet_2.Chain.GroupNorm_2",
|
||||
"encoder.mid_block.resnets.0.norm1": "Encoder.Chain_1.Chain_5.Resnet_1.Chain.GroupNorm_1",
|
||||
"encoder.mid_block.resnets.0.norm2": "Encoder.Chain_1.Chain_5.Resnet_1.Chain.GroupNorm_2",
|
||||
"encoder.mid_block.attentions.0.group_norm": "Encoder.Chain_1.Chain_5.Residual.GroupNorm",
|
||||
"encoder.mid_block.resnets.1.norm1": "Encoder.Chain_1.Chain_5.Resnet_2.Chain.GroupNorm_1",
|
||||
"encoder.mid_block.resnets.1.norm2": "Encoder.Chain_1.Chain_5.Resnet_2.Chain.GroupNorm_2",
|
||||
"encoder.conv_norm_out": "Encoder.Chain_2.GroupNorm",
|
||||
"decoder.mid_block.resnets.0.norm1": "Decoder.Chain_1.Chain_1.Resnet_1.Chain.GroupNorm_1",
|
||||
"decoder.mid_block.resnets.0.norm2": "Decoder.Chain_1.Chain_1.Resnet_1.Chain.GroupNorm_2",
|
||||
"decoder.mid_block.attentions.0.group_norm": "Decoder.Chain_1.Chain_1.Residual.GroupNorm",
|
||||
"decoder.mid_block.resnets.1.norm1": "Decoder.Chain_1.Chain_1.Resnet_2.Chain.GroupNorm_1",
|
||||
"decoder.mid_block.resnets.1.norm2": "Decoder.Chain_1.Chain_1.Resnet_2.Chain.GroupNorm_2",
|
||||
"decoder.up_blocks.0.resnets.0.norm1": "Decoder.Chain_1.Chain_2.Resnet_1.Chain.GroupNorm_1",
|
||||
"decoder.up_blocks.0.resnets.0.norm2": "Decoder.Chain_1.Chain_2.Resnet_1.Chain.GroupNorm_2",
|
||||
"decoder.up_blocks.0.resnets.1.norm1": "Decoder.Chain_1.Chain_2.Resnet_2.Chain.GroupNorm_1",
|
||||
"decoder.up_blocks.0.resnets.1.norm2": "Decoder.Chain_1.Chain_2.Resnet_2.Chain.GroupNorm_2",
|
||||
"decoder.up_blocks.0.resnets.2.norm1": "Decoder.Chain_1.Chain_2.Resnet_3.Chain.GroupNorm_1",
|
||||
"decoder.up_blocks.0.resnets.2.norm2": "Decoder.Chain_1.Chain_2.Resnet_3.Chain.GroupNorm_2",
|
||||
"decoder.up_blocks.1.resnets.0.norm1": "Decoder.Chain_1.Chain_3.Resnet_1.Chain.GroupNorm_1",
|
||||
"decoder.up_blocks.1.resnets.0.norm2": "Decoder.Chain_1.Chain_3.Resnet_1.Chain.GroupNorm_2",
|
||||
"decoder.up_blocks.1.resnets.1.norm1": "Decoder.Chain_1.Chain_3.Resnet_2.Chain.GroupNorm_1",
|
||||
"decoder.up_blocks.1.resnets.1.norm2": "Decoder.Chain_1.Chain_3.Resnet_2.Chain.GroupNorm_2",
|
||||
"decoder.up_blocks.1.resnets.2.norm1": "Decoder.Chain_1.Chain_3.Resnet_3.Chain.GroupNorm_1",
|
||||
"decoder.up_blocks.1.resnets.2.norm2": "Decoder.Chain_1.Chain_3.Resnet_3.Chain.GroupNorm_2",
|
||||
"decoder.up_blocks.2.resnets.0.norm1": "Decoder.Chain_1.Chain_4.Resnet_1.Chain.GroupNorm_1",
|
||||
"encoder.down_blocks.2.resnets.0.conv2": "Encoder.Chain_1.Chain_3.Resnet_1.Chain.Conv2d_2",
|
||||
"encoder.down_blocks.2.resnets.1.conv1": "Encoder.Chain_1.Chain_3.Resnet_2.Chain.Conv2d_1",
|
||||
"encoder.down_blocks.2.resnets.1.conv2": "Encoder.Chain_1.Chain_3.Resnet_2.Chain.Conv2d_2",
|
||||
"encoder.down_blocks.2.downsamplers.0.conv": "Encoder.Chain_1.Chain_3.Downsample.Conv2d",
|
||||
"encoder.down_blocks.3.resnets.0.conv1": "Encoder.Chain_1.Chain_4.Resnet_1.Chain.Conv2d_1",
|
||||
"encoder.down_blocks.3.resnets.0.conv2": "Encoder.Chain_1.Chain_4.Resnet_1.Chain.Conv2d_2",
|
||||
"encoder.down_blocks.3.resnets.1.conv1": "Encoder.Chain_1.Chain_4.Resnet_2.Chain.Conv2d_1",
|
||||
"encoder.down_blocks.3.resnets.1.conv2": "Encoder.Chain_1.Chain_4.Resnet_2.Chain.Conv2d_2",
|
||||
"encoder.mid_block.resnets.0.conv1": "Encoder.Chain_1.Chain_5.Resnet_1.Chain.Conv2d_1",
|
||||
"encoder.mid_block.resnets.0.conv2": "Encoder.Chain_1.Chain_5.Resnet_1.Chain.Conv2d_2",
|
||||
"encoder.mid_block.resnets.1.conv1": "Encoder.Chain_1.Chain_5.Resnet_2.Chain.Conv2d_1",
|
||||
"encoder.mid_block.resnets.1.conv2": "Encoder.Chain_1.Chain_5.Resnet_2.Chain.Conv2d_2",
|
||||
"decoder.mid_block.resnets.0.conv1": "Decoder.Chain_1.Chain_1.Resnet_1.Chain.Conv2d_1",
|
||||
"decoder.mid_block.resnets.0.conv2": "Decoder.Chain_1.Chain_1.Resnet_1.Chain.Conv2d_2",
|
||||
"decoder.mid_block.resnets.1.conv1": "Decoder.Chain_1.Chain_1.Resnet_2.Chain.Conv2d_1",
|
||||
"decoder.mid_block.resnets.1.conv2": "Decoder.Chain_1.Chain_1.Resnet_2.Chain.Conv2d_2",
|
||||
"decoder.up_blocks.0.resnets.0.conv1": "Decoder.Chain_1.Chain_2.Resnet_1.Chain.Conv2d_1",
|
||||
"decoder.up_blocks.0.resnets.0.conv2": "Decoder.Chain_1.Chain_2.Resnet_1.Chain.Conv2d_2",
|
||||
"decoder.up_blocks.0.resnets.1.conv1": "Decoder.Chain_1.Chain_2.Resnet_2.Chain.Conv2d_1",
|
||||
"decoder.up_blocks.0.resnets.1.conv2": "Decoder.Chain_1.Chain_2.Resnet_2.Chain.Conv2d_2",
|
||||
"decoder.up_blocks.0.resnets.2.conv1": "Decoder.Chain_1.Chain_2.Resnet_3.Chain.Conv2d_1",
|
||||
"decoder.up_blocks.0.resnets.2.conv2": "Decoder.Chain_1.Chain_2.Resnet_3.Chain.Conv2d_2",
|
||||
"decoder.up_blocks.0.upsamplers.0.conv": "Decoder.Chain_1.Chain_2.Upsample.Conv2d",
|
||||
"decoder.up_blocks.1.resnets.0.conv1": "Decoder.Chain_1.Chain_3.Resnet_1.Chain.Conv2d_1",
|
||||
"decoder.up_blocks.1.resnets.0.conv2": "Decoder.Chain_1.Chain_3.Resnet_1.Chain.Conv2d_2",
|
||||
"decoder.up_blocks.1.resnets.1.conv1": "Decoder.Chain_1.Chain_3.Resnet_2.Chain.Conv2d_1",
|
||||
"decoder.up_blocks.1.resnets.1.conv2": "Decoder.Chain_1.Chain_3.Resnet_2.Chain.Conv2d_2",
|
||||
"decoder.up_blocks.1.resnets.2.conv1": "Decoder.Chain_1.Chain_3.Resnet_3.Chain.Conv2d_1",
|
||||
"decoder.up_blocks.1.resnets.2.conv2": "Decoder.Chain_1.Chain_3.Resnet_3.Chain.Conv2d_2",
|
||||
"decoder.up_blocks.1.upsamplers.0.conv": "Decoder.Chain_1.Chain_3.Upsample.Conv2d",
|
||||
"encoder.down_blocks.2.resnets.0.conv_shortcut": "Encoder.Chain_1.Chain_3.Resnet_1.Conv2d",
|
||||
"encoder.mid_block.attentions.0.to_q": "Encoder.Chain_1.Chain_5.Residual.SelfAttention2d.Distribute.Linear_1",
|
||||
"encoder.mid_block.attentions.0.to_k": "Encoder.Chain_1.Chain_5.Residual.SelfAttention2d.Distribute.Linear_2",
|
||||
"encoder.mid_block.attentions.0.to_v": "Encoder.Chain_1.Chain_5.Residual.SelfAttention2d.Distribute.Linear_3",
|
||||
"encoder.mid_block.attentions.0.to_out.0": "Encoder.Chain_1.Chain_5.Residual.SelfAttention2d.Linear",
|
||||
"decoder.mid_block.attentions.0.to_q": "Decoder.Chain_1.Chain_1.Residual.SelfAttention2d.Distribute.Linear_1",
|
||||
"decoder.mid_block.attentions.0.to_k": "Decoder.Chain_1.Chain_1.Residual.SelfAttention2d.Distribute.Linear_2",
|
||||
"decoder.mid_block.attentions.0.to_v": "Decoder.Chain_1.Chain_1.Residual.SelfAttention2d.Distribute.Linear_3",
|
||||
"decoder.mid_block.attentions.0.to_out.0": "Decoder.Chain_1.Chain_1.Residual.SelfAttention2d.Linear",
|
||||
"encoder.conv_out": "Encoder.Chain_2.Conv2d",
|
||||
"quant_conv": "Encoder.Chain_3.Conv2d",
|
||||
"post_quant_conv": "Decoder.Conv2d_1",
|
||||
"decoder.conv_in": "Decoder.Conv2d_2",
|
||||
"decoder.up_blocks.2.resnets.0.conv1": "Decoder.Chain_1.Chain_4.Resnet_1.Chain.Conv2d_1",
|
||||
"decoder.up_blocks.2.resnets.0.conv_shortcut": "Decoder.Chain_1.Chain_4.Resnet_1.Conv2d",
|
||||
"decoder.up_blocks.3.resnets.0.conv1": "Decoder.Chain_1.Chain_5.Resnet_1.Chain.Conv2d_1",
|
||||
"decoder.up_blocks.3.resnets.0.conv_shortcut": "Decoder.Chain_1.Chain_5.Resnet_1.Conv2d",
|
||||
"decoder.conv_out": "Decoder.Chain_2.Conv2d"
|
||||
},
|
||||
"source_aliases": {
|
||||
"encoder.mid_block.attentions.0.value": "encoder.mid_block.attentions.0.to_v",
|
||||
"decoder.mid_block.attentions.0.value": "decoder.mid_block.attentions.0.to_v",
|
||||
"decoder.mid_block.attentions.0.proj_attn": "decoder.mid_block.attentions.0.to_out.0",
|
||||
"encoder.mid_block.attentions.0.proj_attn": "encoder.mid_block.attentions.0.to_out.0",
|
||||
"encoder.mid_block.attentions.0.key": "encoder.mid_block.attentions.0.to_k",
|
||||
"decoder.mid_block.attentions.0.key": "decoder.mid_block.attentions.0.to_k",
|
||||
"decoder.mid_block.attentions.0.query": "decoder.mid_block.attentions.0.to_q",
|
||||
"encoder.mid_block.attentions.0.query": "encoder.mid_block.attentions.0.to_q"
|
||||
},
|
||||
"reshapes": {
|
||||
"Encoder.Chain_1.Chain_5.Residual.SelfAttention2d.Distribute.Linear_1.weight": [512, 512],
|
||||
"Encoder.Chain_1.Chain_5.Residual.SelfAttention2d.Distribute.Linear_2.weight": [512, 512],
|
||||
"Encoder.Chain_1.Chain_5.Residual.SelfAttention2d.Distribute.Linear_3.weight": [512, 512],
|
||||
"Encoder.Chain_1.Chain_5.Residual.SelfAttention2d.Linear.weight": [512, 512],
|
||||
"Decoder.Chain_1.Chain_1.Residual.SelfAttention2d.Distribute.Linear_1.weight": [512, 512],
|
||||
"Decoder.Chain_1.Chain_1.Residual.SelfAttention2d.Distribute.Linear_2.weight": [512, 512],
|
||||
"Decoder.Chain_1.Chain_1.Residual.SelfAttention2d.Distribute.Linear_3.weight": [512, 512],
|
||||
"Decoder.Chain_1.Chain_1.Residual.SelfAttention2d.Linear.weight": [512, 512]
|
||||
}
|
||||
}
|
111
imaginairy/weight_management/pattern_collapse.py
Normal file
@ -0,0 +1,111 @@
|
||||
def find_state_dict_key_patterns(patterns):
|
||||
"""Given a list of state_dict keys, collapse similar keys into patterns.
|
||||
|
||||
For example, if the keys are:
|
||||
|
||||
foo.bar.0.baz
|
||||
foo.bar.1.baz
|
||||
|
||||
Then the pattern will be:
|
||||
|
||||
foo.bar.(0|1).baz
|
||||
|
||||
"""
|
||||
prev_pattern_count = len(patterns) + 1
|
||||
|
||||
# keep running the pattern collapse function until the list of patterns doesn't get any smaller
|
||||
while prev_pattern_count > len(patterns):
|
||||
prev_pattern_count = len(patterns)
|
||||
prev_pattern_count_sub = len(patterns) + 1
|
||||
while prev_pattern_count_sub > len(patterns):
|
||||
prev_pattern_count_sub = len(patterns)
|
||||
patterns = _collapse_patterns(patterns)
|
||||
prev_pattern_count_sub = len(patterns) + 1
|
||||
while prev_pattern_count_sub > len(patterns):
|
||||
prev_pattern_count_sub = len(patterns)
|
||||
patterns = _collapse_patterns(patterns, reverse_sort=True)
|
||||
|
||||
return patterns
|
||||
|
||||
|
||||
def prefix_only(k):
|
||||
return k.rsplit(".", 1)[0]
|
||||
|
||||
|
||||
def nested_dict_from_keys(keys):
|
||||
output = {}
|
||||
for key in keys:
|
||||
parts = key.split(".")
|
||||
# Start from the root of the output and iteratively go deeper
|
||||
current_level = output
|
||||
for part in parts:
|
||||
# If the key doesn't exist at the current level, create a new dict
|
||||
if part not in current_level:
|
||||
current_level[part] = {}
|
||||
# Go one level deeper
|
||||
current_level = current_level[part]
|
||||
return output
|
||||
|
||||
|
||||
def _collapse_patterns(keys, reverse_sort=False):
|
||||
keys = keys.copy()
|
||||
keys = [k.split(".") for k in keys]
|
||||
if reverse_sort:
|
||||
keys.sort(key=lambda k: (len(k), list(reversed(str(k)))))
|
||||
else:
|
||||
keys.sort(key=lambda k: (len(k), k))
|
||||
new_key_patterns = []
|
||||
curr_key = None
|
||||
for k in keys:
|
||||
if curr_key is None:
|
||||
curr_key = k
|
||||
continue
|
||||
single_diff_index = get_single_difference(curr_key, k)
|
||||
if single_diff_index is None:
|
||||
new_key_patterns.append(curr_key)
|
||||
curr_key = k
|
||||
else:
|
||||
cur_part_val = curr_key[single_diff_index]
|
||||
key_part_val = k[single_diff_index]
|
||||
if "(" in key_part_val:
|
||||
key_vals = key_part_val.strip("()").split("|")
|
||||
else:
|
||||
key_vals = [key_part_val]
|
||||
if "(" in cur_part_val:
|
||||
vals = cur_part_val.strip("()").split("|")
|
||||
else:
|
||||
vals = [cur_part_val]
|
||||
vals.extend(key_vals)
|
||||
vals.sort()
|
||||
try:
|
||||
vals = [int(v) for v in vals]
|
||||
vals.sort()
|
||||
vals = [str(v) for v in vals]
|
||||
except ValueError:
|
||||
pass
|
||||
new_cur_part_val = "(" + "|".join(vals) + ")"
|
||||
curr_key[single_diff_index] = new_cur_part_val
|
||||
new_key_patterns.append(curr_key)
|
||||
new_key_patterns = [".".join(p) for p in new_key_patterns]
|
||||
new_key_patterns.sort()
|
||||
return new_key_patterns
|
||||
|
||||
|
||||
def get_single_difference(a, b):
|
||||
"""
|
||||
Given two list of strings, if only a single string differs between the two lists, return the index of the differing string.
|
||||
"""
|
||||
if len(a) != len(b):
|
||||
return None
|
||||
diff_count = 0
|
||||
diff_index = None
|
||||
for i, (asub, bsub) in enumerate(zip(a, b)):
|
||||
if asub != bsub:
|
||||
diff_count += 1
|
||||
diff_index = i
|
||||
if diff_count > 1:
|
||||
break
|
||||
|
||||
if diff_count == 1:
|
||||
return diff_index
|
||||
return None
|
48
imaginairy/weight_management/utils.py
Normal file
@ -0,0 +1,48 @@
|
||||
import os.path
|
||||
|
||||
_base_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
|
||||
WEIGHT_MAPS_PATH = os.path.join(_base_dir, "maps")
|
||||
WEIGHT_INFO_PATH = os.path.join(_base_dir, "weight_info")
|
||||
|
||||
|
||||
class MODEL_NAMES:
|
||||
SD15 = "stable-diffusion-1-5"
|
||||
|
||||
|
||||
class COMPONENT_NAMES:
|
||||
VAE = "vae"
|
||||
TEXT_ENCODER = "text"
|
||||
UNET = "unet"
|
||||
LORA = "lora"
|
||||
|
||||
|
||||
class FORMAT_NAMES:
|
||||
COMPVIS = "compvis"
|
||||
DIFFUSERS = "diffusers"
|
||||
REFINERS = "refiners"
|
||||
|
||||
|
||||
def save_model_info(model_name, component_name, format_name, info_type, data):
|
||||
import json
|
||||
|
||||
model_name = model_name.replace("_", "-")
|
||||
component_name = component_name.replace("_", "-")
|
||||
format_name = format_name.replace("_", "-")
|
||||
filename = os.path.join(
|
||||
WEIGHT_INFO_PATH,
|
||||
f"{model_name}_{component_name}_{format_name}.{info_type}.json",
|
||||
)
|
||||
with open(filename, "w") as f:
|
||||
f.write(json.dumps(data, indent=2))
|
||||
|
||||
|
||||
def prefixes_only(keys):
|
||||
new_keys = []
|
||||
prev_key = None
|
||||
for k in keys:
|
||||
new_key = k.rsplit(".", 1)[0]
|
||||
if new_key != prev_key:
|
||||
new_keys.append(new_key)
|
||||
prev_key = new_key
|
||||
return new_keys
|
@ -0,0 +1,5 @@
|
||||
[
|
||||
"down_blocks.(0|1|2).attentions.(0|1).transformer_blocks.0.(attn1|attn2).processor.(to_k_lora|to_out_lora|to_q_lora|to_v_lora).(down|up).weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.(attn1|attn2).processor.(to_k_lora|to_out_lora|to_q_lora|to_v_lora).(down|up).weight",
|
||||
"up_blocks.(1|2|3).attentions.(0|1|2).transformer_blocks.0.(attn1|attn2).processor.(to_k_lora|to_out_lora|to_q_lora|to_v_lora).(down|up).weight"
|
||||
]
|
@ -0,0 +1,258 @@
|
||||
[
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor.to_out_lora.up.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.down.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.up.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.down.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.up.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.down.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.up.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.down.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.up.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.down.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.processor.to_q_lora.up.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.down.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.processor.to_k_lora.up.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.down.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.processor.to_v_lora.up.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.down.weight",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.processor.to_out_lora.up.weight"
|
||||
]
|
@ -0,0 +1,3 @@
|
||||
[
|
||||
"unet.(0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|33|34|35|36|37|38|39|40|41|42|43|44|45|46|47|48|49|50|51|52|53|54|55|56|57|58|59|60|61|62|63|64|65|66|67|68|69|70|71|72|73|74|75|76|77|78|79|80|81|82|83|84|85|86|87|88|89|90|91|92|93|94|95|96|97|98|99|100|101|102|103|104|105|106|107|108|109|110|111|112|113|114|115|116|117|118|119|120|121|122|123|124|125|126|127|128|129|130|131|132|133|134|135|136|137|138|139|140|141|142|143|144|145|146|147|148|149|150|151|152|153|154|155|156|157|158|159|160|161|162|163|164|165|166|167|168|169|170|171|172|173|174|175|176|177|178|179|180|181|182|183|184|185|186|187|188|189|190|191|192|193|194|195|196|197|198|199|200|201|202|203|204|205|206|207|208|209|210|211|212|213|214|215|216|217|218|219|220|221|222|223|224|225|226|227|228|229|230|231|232|233|234|235|236|237|238|239|240|241|242|243|244|245|246|247|248|249|250|251|252|253|254|255|256|257|258|259|260|261|262|263|264|265|266|267|268|269|270|271|272|273|274|275|276|277|278|279|280|281|282|283|284|285|286|287|288|289|290|291|292|293|294|295|296|297|298|299|300|301|302|303|304|305|306|307|308|309|310|311|312|313|314|315|316|317|318|319)"
|
||||
]
|
@ -0,0 +1,322 @@
|
||||
[
|
||||
"unet.000",
|
||||
"unet.001",
|
||||
"unet.002",
|
||||
"unet.003",
|
||||
"unet.004",
|
||||
"unet.005",
|
||||
"unet.006",
|
||||
"unet.007",
|
||||
"unet.008",
|
||||
"unet.009",
|
||||
"unet.010",
|
||||
"unet.011",
|
||||
"unet.012",
|
||||
"unet.013",
|
||||
"unet.014",
|
||||
"unet.015",
|
||||
"unet.016",
|
||||
"unet.017",
|
||||
"unet.018",
|
||||
"unet.019",
|
||||
"unet.020",
|
||||
"unet.021",
|
||||
"unet.022",
|
||||
"unet.023",
|
||||
"unet.024",
|
||||
"unet.025",
|
||||
"unet.026",
|
||||
"unet.027",
|
||||
"unet.028",
|
||||
"unet.029",
|
||||
"unet.030",
|
||||
"unet.031",
|
||||
"unet.032",
|
||||
"unet.033",
|
||||
"unet.034",
|
||||
"unet.035",
|
||||
"unet.036",
|
||||
"unet.037",
|
||||
"unet.038",
|
||||
"unet.039",
|
||||
"unet.040",
|
||||
"unet.041",
|
||||
"unet.042",
|
||||
"unet.043",
|
||||
"unet.044",
|
||||
"unet.045",
|
||||
"unet.046",
|
||||
"unet.047",
|
||||
"unet.048",
|
||||
"unet.049",
|
||||
"unet.050",
|
||||
"unet.051",
|
||||
"unet.052",
|
||||
"unet.053",
|
||||
"unet.054",
|
||||
"unet.055",
|
||||
"unet.056",
|
||||
"unet.057",
|
||||
"unet.058",
|
||||
"unet.059",
|
||||
"unet.060",
|
||||
"unet.061",
|
||||
"unet.062",
|
||||
"unet.063",
|
||||
"unet.064",
|
||||
"unet.065",
|
||||
"unet.066",
|
||||
"unet.067",
|
||||
"unet.068",
|
||||
"unet.069",
|
||||
"unet.070",
|
||||
"unet.071",
|
||||
"unet.072",
|
||||
"unet.073",
|
||||
"unet.074",
|
||||
"unet.075",
|
||||
"unet.076",
|
||||
"unet.077",
|
||||
"unet.078",
|
||||
"unet.079",
|
||||
"unet.080",
|
||||
"unet.081",
|
||||
"unet.082",
|
||||
"unet.083",
|
||||
"unet.084",
|
||||
"unet.085",
|
||||
"unet.086",
|
||||
"unet.087",
|
||||
"unet.088",
|
||||
"unet.089",
|
||||
"unet.090",
|
||||
"unet.091",
|
||||
"unet.092",
|
||||
"unet.093",
|
||||
"unet.094",
|
||||
"unet.095",
|
||||
"unet.096",
|
||||
"unet.097",
|
||||
"unet.098",
|
||||
"unet.099",
|
||||
"unet.100",
|
||||
"unet.101",
|
||||
"unet.102",
|
||||
"unet.103",
|
||||
"unet.104",
|
||||
"unet.105",
|
||||
"unet.106",
|
||||
"unet.107",
|
||||
"unet.108",
|
||||
"unet.109",
|
||||
"unet.110",
|
||||
"unet.111",
|
||||
"unet.112",
|
||||
"unet.113",
|
||||
"unet.114",
|
||||
"unet.115",
|
||||
"unet.116",
|
||||
"unet.117",
|
||||
"unet.118",
|
||||
"unet.119",
|
||||
"unet.120",
|
||||
"unet.121",
|
||||
"unet.122",
|
||||
"unet.123",
|
||||
"unet.124",
|
||||
"unet.125",
|
||||
"unet.126",
|
||||
"unet.127",
|
||||
"unet.128",
|
||||
"unet.129",
|
||||
"unet.130",
|
||||
"unet.131",
|
||||
"unet.132",
|
||||
"unet.133",
|
||||
"unet.134",
|
||||
"unet.135",
|
||||
"unet.136",
|
||||
"unet.137",
|
||||
"unet.138",
|
||||
"unet.139",
|
||||
"unet.140",
|
||||
"unet.141",
|
||||
"unet.142",
|
||||
"unet.143",
|
||||
"unet.144",
|
||||
"unet.145",
|
||||
"unet.146",
|
||||
"unet.147",
|
||||
"unet.148",
|
||||
"unet.149",
|
||||
"unet.150",
|
||||
"unet.151",
|
||||
"unet.152",
|
||||
"unet.153",
|
||||
"unet.154",
|
||||
"unet.155",
|
||||
"unet.156",
|
||||
"unet.157",
|
||||
"unet.158",
|
||||
"unet.159",
|
||||
"unet.160",
|
||||
"unet.161",
|
||||
"unet.162",
|
||||
"unet.163",
|
||||
"unet.164",
|
||||
"unet.165",
|
||||
"unet.166",
|
||||
"unet.167",
|
||||
"unet.168",
|
||||
"unet.169",
|
||||
"unet.170",
|
||||
"unet.171",
|
||||
"unet.172",
|
||||
"unet.173",
|
||||
"unet.174",
|
||||
"unet.175",
|
||||
"unet.176",
|
||||
"unet.177",
|
||||
"unet.178",
|
||||
"unet.179",
|
||||
"unet.180",
|
||||
"unet.181",
|
||||
"unet.182",
|
||||
"unet.183",
|
||||
"unet.184",
|
||||
"unet.185",
|
||||
"unet.186",
|
||||
"unet.187",
|
||||
"unet.188",
|
||||
"unet.189",
|
||||
"unet.190",
|
||||
"unet.191",
|
||||
"unet.192",
|
||||
"unet.193",
|
||||
"unet.194",
|
||||
"unet.195",
|
||||
"unet.196",
|
||||
"unet.197",
|
||||
"unet.198",
|
||||
"unet.199",
|
||||
"unet.200",
|
||||
"unet.201",
|
||||
"unet.202",
|
||||
"unet.203",
|
||||
"unet.204",
|
||||
"unet.205",
|
||||
"unet.206",
|
||||
"unet.207",
|
||||
"unet.208",
|
||||
"unet.209",
|
||||
"unet.210",
|
||||
"unet.211",
|
||||
"unet.212",
|
||||
"unet.213",
|
||||
"unet.214",
|
||||
"unet.215",
|
||||
"unet.216",
|
||||
"unet.217",
|
||||
"unet.218",
|
||||
"unet.219",
|
||||
"unet.220",
|
||||
"unet.221",
|
||||
"unet.222",
|
||||
"unet.223",
|
||||
"unet.224",
|
||||
"unet.225",
|
||||
"unet.226",
|
||||
"unet.227",
|
||||
"unet.228",
|
||||
"unet.229",
|
||||
"unet.230",
|
||||
"unet.231",
|
||||
"unet.232",
|
||||
"unet.233",
|
||||
"unet.234",
|
||||
"unet.235",
|
||||
"unet.236",
|
||||
"unet.237",
|
||||
"unet.238",
|
||||
"unet.239",
|
||||
"unet.240",
|
||||
"unet.241",
|
||||
"unet.242",
|
||||
"unet.243",
|
||||
"unet.244",
|
||||
"unet.245",
|
||||
"unet.246",
|
||||
"unet.247",
|
||||
"unet.248",
|
||||
"unet.249",
|
||||
"unet.250",
|
||||
"unet.251",
|
||||
"unet.252",
|
||||
"unet.253",
|
||||
"unet.254",
|
||||
"unet.255",
|
||||
"unet.256",
|
||||
"unet.257",
|
||||
"unet.258",
|
||||
"unet.259",
|
||||
"unet.260",
|
||||
"unet.261",
|
||||
"unet.262",
|
||||
"unet.263",
|
||||
"unet.264",
|
||||
"unet.265",
|
||||
"unet.266",
|
||||
"unet.267",
|
||||
"unet.268",
|
||||
"unet.269",
|
||||
"unet.270",
|
||||
"unet.271",
|
||||
"unet.272",
|
||||
"unet.273",
|
||||
"unet.274",
|
||||
"unet.275",
|
||||
"unet.276",
|
||||
"unet.277",
|
||||
"unet.278",
|
||||
"unet.279",
|
||||
"unet.280",
|
||||
"unet.281",
|
||||
"unet.282",
|
||||
"unet.283",
|
||||
"unet.284",
|
||||
"unet.285",
|
||||
"unet.286",
|
||||
"unet.287",
|
||||
"unet.288",
|
||||
"unet.289",
|
||||
"unet.290",
|
||||
"unet.291",
|
||||
"unet.292",
|
||||
"unet.293",
|
||||
"unet.294",
|
||||
"unet.295",
|
||||
"unet.296",
|
||||
"unet.297",
|
||||
"unet.298",
|
||||
"unet.299",
|
||||
"unet.300",
|
||||
"unet.301",
|
||||
"unet.302",
|
||||
"unet.303",
|
||||
"unet.304",
|
||||
"unet.305",
|
||||
"unet.306",
|
||||
"unet.307",
|
||||
"unet.308",
|
||||
"unet.309",
|
||||
"unet.310",
|
||||
"unet.311",
|
||||
"unet.312",
|
||||
"unet.313",
|
||||
"unet.314",
|
||||
"unet.315",
|
||||
"unet.316",
|
||||
"unet.317",
|
||||
"unet.318",
|
||||
"unet.319"
|
||||
]
|
@ -0,0 +1,7 @@
|
||||
[
|
||||
"cond_stage_model.transformer.text_model.(embeddings|final_layer_norm)",
|
||||
"cond_stage_model.transformer.text_model.embeddings.(position_embedding|token_embedding)",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.(0|1|2|3|4|5|6|7|8|9|10|11).(layer_norm1|layer_norm2)",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.(0|1|2|3|4|5|6|7|8|9|10|11).mlp.(fc1|fc2)",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.(0|1|2|3|4|5|6|7|8|9|10|11).self_attn.(k_proj|out_proj|q_proj|v_proj)"
|
||||
]
|
@ -0,0 +1,102 @@
|
||||
[
|
||||
"transformer.text_model.embeddings.token_embedding",
|
||||
"transformer.text_model.embeddings.position_embedding",
|
||||
"transformer.text_model.embeddings",
|
||||
"transformer.text_model.encoder.layers.0.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.0.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.0.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.0.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.0.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.0.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.0.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.0.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.1.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.1.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.1.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.1.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.1.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.1.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.1.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.1.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.2.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.2.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.2.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.2.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.2.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.2.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.2.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.2.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.3.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.3.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.3.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.3.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.3.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.3.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.3.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.3.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.4.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.4.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.4.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.4.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.4.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.4.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.4.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.4.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.5.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.5.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.5.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.5.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.5.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.5.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.5.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.5.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.6.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.6.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.6.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.6.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.6.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.6.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.6.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.6.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.7.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.7.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.7.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.7.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.7.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.7.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.7.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.7.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.8.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.8.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.8.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.8.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.8.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.8.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.8.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.8.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.9.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.9.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.9.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.9.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.9.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.9.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.9.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.9.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.10.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.10.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.10.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.10.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.10.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.10.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.10.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.10.mlp.fc2",
|
||||
"transformer.text_model.encoder.layers.11.layer_norm1",
|
||||
"transformer.text_model.encoder.layers.11.self_attn.q_proj",
|
||||
"transformer.text_model.encoder.layers.11.self_attn.k_proj",
|
||||
"transformer.text_model.encoder.layers.11.self_attn.v_proj",
|
||||
"transformer.text_model.encoder.layers.11.self_attn.out_proj",
|
||||
"transformer.text_model.encoder.layers.11.layer_norm2",
|
||||
"transformer.text_model.encoder.layers.11.mlp.fc1",
|
||||
"transformer.text_model.encoder.layers.11.mlp.fc2",
|
||||
"transformer.text_model.final_layer_norm"
|
||||
]
|
@ -0,0 +1,102 @@
|
||||
[
|
||||
"cond_stage_model.transformer.text_model.embeddings.position_embedding",
|
||||
"cond_stage_model.transformer.text_model.embeddings",
|
||||
"cond_stage_model.transformer.text_model.embeddings.token_embedding",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.k_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.out_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.q_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.v_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.k_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.out_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.q_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.v_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.k_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.out_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.q_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.v_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.k_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.out_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.q_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.v_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.k_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.out_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.q_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.v_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.k_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.out_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.q_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.v_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.k_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.out_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.q_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.v_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.k_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.out_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.q_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.v_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.k_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.out_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.q_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.v_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.k_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.out_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.q_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.v_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.k_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.out_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.q_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.v_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc1",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc2",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.k_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.out_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.q_proj",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.v_proj",
|
||||
"cond_stage_model.transformer.text_model.final_layer_norm"
|
||||
]
|
@ -0,0 +1,7 @@
|
||||
[
|
||||
"text_model.(embeddings|final_layer_norm)",
|
||||
"text_model.embeddings.(position_embedding|token_embedding)",
|
||||
"text_model.encoder.layers.(0|1|2|3|4|5|6|7|8|9|10|11).(layer_norm1|layer_norm2)",
|
||||
"text_model.encoder.layers.(0|1|2|3|4|5|6|7|8|9|10|11).mlp.(fc1|fc2)",
|
||||
"text_model.encoder.layers.(0|1|2|3|4|5|6|7|8|9|10|11).self_attn.(k_proj|out_proj|q_proj|v_proj)"
|
||||
]
|
@ -0,0 +1,102 @@
|
||||
[
|
||||
"text_model.embeddings.token_embedding",
|
||||
"text_model.embeddings.position_embedding",
|
||||
"text_model.embeddings",
|
||||
"text_model.encoder.layers.0.layer_norm1",
|
||||
"text_model.encoder.layers.0.self_attn.q_proj",
|
||||
"text_model.encoder.layers.0.self_attn.k_proj",
|
||||
"text_model.encoder.layers.0.self_attn.v_proj",
|
||||
"text_model.encoder.layers.0.self_attn.out_proj",
|
||||
"text_model.encoder.layers.0.layer_norm2",
|
||||
"text_model.encoder.layers.0.mlp.fc1",
|
||||
"text_model.encoder.layers.0.mlp.fc2",
|
||||
"text_model.encoder.layers.1.layer_norm1",
|
||||
"text_model.encoder.layers.1.self_attn.q_proj",
|
||||
"text_model.encoder.layers.1.self_attn.k_proj",
|
||||
"text_model.encoder.layers.1.self_attn.v_proj",
|
||||
"text_model.encoder.layers.1.self_attn.out_proj",
|
||||
"text_model.encoder.layers.1.layer_norm2",
|
||||
"text_model.encoder.layers.1.mlp.fc1",
|
||||
"text_model.encoder.layers.1.mlp.fc2",
|
||||
"text_model.encoder.layers.2.layer_norm1",
|
||||
"text_model.encoder.layers.2.self_attn.q_proj",
|
||||
"text_model.encoder.layers.2.self_attn.k_proj",
|
||||
"text_model.encoder.layers.2.self_attn.v_proj",
|
||||
"text_model.encoder.layers.2.self_attn.out_proj",
|
||||
"text_model.encoder.layers.2.layer_norm2",
|
||||
"text_model.encoder.layers.2.mlp.fc1",
|
||||
"text_model.encoder.layers.2.mlp.fc2",
|
||||
"text_model.encoder.layers.3.layer_norm1",
|
||||
"text_model.encoder.layers.3.self_attn.q_proj",
|
||||
"text_model.encoder.layers.3.self_attn.k_proj",
|
||||
"text_model.encoder.layers.3.self_attn.v_proj",
|
||||
"text_model.encoder.layers.3.self_attn.out_proj",
|
||||
"text_model.encoder.layers.3.layer_norm2",
|
||||
"text_model.encoder.layers.3.mlp.fc1",
|
||||
"text_model.encoder.layers.3.mlp.fc2",
|
||||
"text_model.encoder.layers.4.layer_norm1",
|
||||
"text_model.encoder.layers.4.self_attn.q_proj",
|
||||
"text_model.encoder.layers.4.self_attn.k_proj",
|
||||
"text_model.encoder.layers.4.self_attn.v_proj",
|
||||
"text_model.encoder.layers.4.self_attn.out_proj",
|
||||
"text_model.encoder.layers.4.layer_norm2",
|
||||
"text_model.encoder.layers.4.mlp.fc1",
|
||||
"text_model.encoder.layers.4.mlp.fc2",
|
||||
"text_model.encoder.layers.5.layer_norm1",
|
||||
"text_model.encoder.layers.5.self_attn.q_proj",
|
||||
"text_model.encoder.layers.5.self_attn.k_proj",
|
||||
"text_model.encoder.layers.5.self_attn.v_proj",
|
||||
"text_model.encoder.layers.5.self_attn.out_proj",
|
||||
"text_model.encoder.layers.5.layer_norm2",
|
||||
"text_model.encoder.layers.5.mlp.fc1",
|
||||
"text_model.encoder.layers.5.mlp.fc2",
|
||||
"text_model.encoder.layers.6.layer_norm1",
|
||||
"text_model.encoder.layers.6.self_attn.q_proj",
|
||||
"text_model.encoder.layers.6.self_attn.k_proj",
|
||||
"text_model.encoder.layers.6.self_attn.v_proj",
|
||||
"text_model.encoder.layers.6.self_attn.out_proj",
|
||||
"text_model.encoder.layers.6.layer_norm2",
|
||||
"text_model.encoder.layers.6.mlp.fc1",
|
||||
"text_model.encoder.layers.6.mlp.fc2",
|
||||
"text_model.encoder.layers.7.layer_norm1",
|
||||
"text_model.encoder.layers.7.self_attn.q_proj",
|
||||
"text_model.encoder.layers.7.self_attn.k_proj",
|
||||
"text_model.encoder.layers.7.self_attn.v_proj",
|
||||
"text_model.encoder.layers.7.self_attn.out_proj",
|
||||
"text_model.encoder.layers.7.layer_norm2",
|
||||
"text_model.encoder.layers.7.mlp.fc1",
|
||||
"text_model.encoder.layers.7.mlp.fc2",
|
||||
"text_model.encoder.layers.8.layer_norm1",
|
||||
"text_model.encoder.layers.8.self_attn.q_proj",
|
||||
"text_model.encoder.layers.8.self_attn.k_proj",
|
||||
"text_model.encoder.layers.8.self_attn.v_proj",
|
||||
"text_model.encoder.layers.8.self_attn.out_proj",
|
||||
"text_model.encoder.layers.8.layer_norm2",
|
||||
"text_model.encoder.layers.8.mlp.fc1",
|
||||
"text_model.encoder.layers.8.mlp.fc2",
|
||||
"text_model.encoder.layers.9.layer_norm1",
|
||||
"text_model.encoder.layers.9.self_attn.q_proj",
|
||||
"text_model.encoder.layers.9.self_attn.k_proj",
|
||||
"text_model.encoder.layers.9.self_attn.v_proj",
|
||||
"text_model.encoder.layers.9.self_attn.out_proj",
|
||||
"text_model.encoder.layers.9.layer_norm2",
|
||||
"text_model.encoder.layers.9.mlp.fc1",
|
||||
"text_model.encoder.layers.9.mlp.fc2",
|
||||
"text_model.encoder.layers.10.layer_norm1",
|
||||
"text_model.encoder.layers.10.self_attn.q_proj",
|
||||
"text_model.encoder.layers.10.self_attn.k_proj",
|
||||
"text_model.encoder.layers.10.self_attn.v_proj",
|
||||
"text_model.encoder.layers.10.self_attn.out_proj",
|
||||
"text_model.encoder.layers.10.layer_norm2",
|
||||
"text_model.encoder.layers.10.mlp.fc1",
|
||||
"text_model.encoder.layers.10.mlp.fc2",
|
||||
"text_model.encoder.layers.11.layer_norm1",
|
||||
"text_model.encoder.layers.11.self_attn.q_proj",
|
||||
"text_model.encoder.layers.11.self_attn.k_proj",
|
||||
"text_model.encoder.layers.11.self_attn.v_proj",
|
||||
"text_model.encoder.layers.11.self_attn.out_proj",
|
||||
"text_model.encoder.layers.11.layer_norm2",
|
||||
"text_model.encoder.layers.11.mlp.fc1",
|
||||
"text_model.encoder.layers.11.mlp.fc2",
|
||||
"text_model.final_layer_norm"
|
||||
]
|
@ -0,0 +1,102 @@
|
||||
[
|
||||
"text_model.embeddings.position_embedding",
|
||||
"text_model.embeddings",
|
||||
"text_model.embeddings.token_embedding",
|
||||
"text_model.encoder.layers.0.layer_norm1",
|
||||
"text_model.encoder.layers.0.layer_norm2",
|
||||
"text_model.encoder.layers.0.mlp.fc1",
|
||||
"text_model.encoder.layers.0.mlp.fc2",
|
||||
"text_model.encoder.layers.0.self_attn.k_proj",
|
||||
"text_model.encoder.layers.0.self_attn.out_proj",
|
||||
"text_model.encoder.layers.0.self_attn.q_proj",
|
||||
"text_model.encoder.layers.0.self_attn.v_proj",
|
||||
"text_model.encoder.layers.1.layer_norm1",
|
||||
"text_model.encoder.layers.1.layer_norm2",
|
||||
"text_model.encoder.layers.1.mlp.fc1",
|
||||
"text_model.encoder.layers.1.mlp.fc2",
|
||||
"text_model.encoder.layers.1.self_attn.k_proj",
|
||||
"text_model.encoder.layers.1.self_attn.out_proj",
|
||||
"text_model.encoder.layers.1.self_attn.q_proj",
|
||||
"text_model.encoder.layers.1.self_attn.v_proj",
|
||||
"text_model.encoder.layers.10.layer_norm1",
|
||||
"text_model.encoder.layers.10.layer_norm2",
|
||||
"text_model.encoder.layers.10.mlp.fc1",
|
||||
"text_model.encoder.layers.10.mlp.fc2",
|
||||
"text_model.encoder.layers.10.self_attn.k_proj",
|
||||
"text_model.encoder.layers.10.self_attn.out_proj",
|
||||
"text_model.encoder.layers.10.self_attn.q_proj",
|
||||
"text_model.encoder.layers.10.self_attn.v_proj",
|
||||
"text_model.encoder.layers.11.layer_norm1",
|
||||
"text_model.encoder.layers.11.layer_norm2",
|
||||
"text_model.encoder.layers.11.mlp.fc1",
|
||||
"text_model.encoder.layers.11.mlp.fc2",
|
||||
"text_model.encoder.layers.11.self_attn.k_proj",
|
||||
"text_model.encoder.layers.11.self_attn.out_proj",
|
||||
"text_model.encoder.layers.11.self_attn.q_proj",
|
||||
"text_model.encoder.layers.11.self_attn.v_proj",
|
||||
"text_model.encoder.layers.2.layer_norm1",
|
||||
"text_model.encoder.layers.2.layer_norm2",
|
||||
"text_model.encoder.layers.2.mlp.fc1",
|
||||
"text_model.encoder.layers.2.mlp.fc2",
|
||||
"text_model.encoder.layers.2.self_attn.k_proj",
|
||||
"text_model.encoder.layers.2.self_attn.out_proj",
|
||||
"text_model.encoder.layers.2.self_attn.q_proj",
|
||||
"text_model.encoder.layers.2.self_attn.v_proj",
|
||||
"text_model.encoder.layers.3.layer_norm1",
|
||||
"text_model.encoder.layers.3.layer_norm2",
|
||||
"text_model.encoder.layers.3.mlp.fc1",
|
||||
"text_model.encoder.layers.3.mlp.fc2",
|
||||
"text_model.encoder.layers.3.self_attn.k_proj",
|
||||
"text_model.encoder.layers.3.self_attn.out_proj",
|
||||
"text_model.encoder.layers.3.self_attn.q_proj",
|
||||
"text_model.encoder.layers.3.self_attn.v_proj",
|
||||
"text_model.encoder.layers.4.layer_norm1",
|
||||
"text_model.encoder.layers.4.layer_norm2",
|
||||
"text_model.encoder.layers.4.mlp.fc1",
|
||||
"text_model.encoder.layers.4.mlp.fc2",
|
||||
"text_model.encoder.layers.4.self_attn.k_proj",
|
||||
"text_model.encoder.layers.4.self_attn.out_proj",
|
||||
"text_model.encoder.layers.4.self_attn.q_proj",
|
||||
"text_model.encoder.layers.4.self_attn.v_proj",
|
||||
"text_model.encoder.layers.5.layer_norm1",
|
||||
"text_model.encoder.layers.5.layer_norm2",
|
||||
"text_model.encoder.layers.5.mlp.fc1",
|
||||
"text_model.encoder.layers.5.mlp.fc2",
|
||||
"text_model.encoder.layers.5.self_attn.k_proj",
|
||||
"text_model.encoder.layers.5.self_attn.out_proj",
|
||||
"text_model.encoder.layers.5.self_attn.q_proj",
|
||||
"text_model.encoder.layers.5.self_attn.v_proj",
|
||||
"text_model.encoder.layers.6.layer_norm1",
|
||||
"text_model.encoder.layers.6.layer_norm2",
|
||||
"text_model.encoder.layers.6.mlp.fc1",
|
||||
"text_model.encoder.layers.6.mlp.fc2",
|
||||
"text_model.encoder.layers.6.self_attn.k_proj",
|
||||
"text_model.encoder.layers.6.self_attn.out_proj",
|
||||
"text_model.encoder.layers.6.self_attn.q_proj",
|
||||
"text_model.encoder.layers.6.self_attn.v_proj",
|
||||
"text_model.encoder.layers.7.layer_norm1",
|
||||
"text_model.encoder.layers.7.layer_norm2",
|
||||
"text_model.encoder.layers.7.mlp.fc1",
|
||||
"text_model.encoder.layers.7.mlp.fc2",
|
||||
"text_model.encoder.layers.7.self_attn.k_proj",
|
||||
"text_model.encoder.layers.7.self_attn.out_proj",
|
||||
"text_model.encoder.layers.7.self_attn.q_proj",
|
||||
"text_model.encoder.layers.7.self_attn.v_proj",
|
||||
"text_model.encoder.layers.8.layer_norm1",
|
||||
"text_model.encoder.layers.8.layer_norm2",
|
||||
"text_model.encoder.layers.8.mlp.fc1",
|
||||
"text_model.encoder.layers.8.mlp.fc2",
|
||||
"text_model.encoder.layers.8.self_attn.k_proj",
|
||||
"text_model.encoder.layers.8.self_attn.out_proj",
|
||||
"text_model.encoder.layers.8.self_attn.q_proj",
|
||||
"text_model.encoder.layers.8.self_attn.v_proj",
|
||||
"text_model.encoder.layers.9.layer_norm1",
|
||||
"text_model.encoder.layers.9.layer_norm2",
|
||||
"text_model.encoder.layers.9.mlp.fc1",
|
||||
"text_model.encoder.layers.9.mlp.fc2",
|
||||
"text_model.encoder.layers.9.self_attn.k_proj",
|
||||
"text_model.encoder.layers.9.self_attn.out_proj",
|
||||
"text_model.encoder.layers.9.self_attn.q_proj",
|
||||
"text_model.encoder.layers.9.self_attn.v_proj",
|
||||
"text_model.final_layer_norm"
|
||||
]
|
@ -0,0 +1,42 @@
|
||||
[
|
||||
"model.diffusion_model.(input_blocks|output_blocks).(1|2|4|5|7|8|10|11).0.emb_layers.1",
|
||||
"model.diffusion_model.(input_blocks|output_blocks).(1|2|4|5|7|8|10|11).0.in_layers.(0|2)",
|
||||
"model.diffusion_model.(input_blocks|output_blocks).(1|2|4|5|7|8|10|11).0.out_layers.(0|3)",
|
||||
"model.diffusion_model.(input_blocks|output_blocks).(4|5|7|8).1.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"model.diffusion_model.(input_blocks|output_blocks).(4|5|7|8).1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.(input_blocks|output_blocks).(4|7).0.skip_connection",
|
||||
"model.diffusion_model.(out|time_embed).(0|2)",
|
||||
"model.diffusion_model.input_blocks.(1|2|4|5|7|8).1.(norm|proj_in|proj_out)",
|
||||
"model.diffusion_model.input_blocks.(1|2|4|5|7|8).1.transformer_blocks.0.(attn1|attn2).(to_k|to_q|to_v)",
|
||||
"model.diffusion_model.input_blocks.(1|2|4|5|7|8).1.transformer_blocks.0.(norm1|norm2|norm3)",
|
||||
"model.diffusion_model.input_blocks.(1|2|4|5|7|8).1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.input_blocks.(3|6|9).0.op",
|
||||
"model.diffusion_model.input_blocks.0.0",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.middle_block.(0|2).emb_layers.1",
|
||||
"model.diffusion_model.middle_block.(0|2).in_layers.(0|2)",
|
||||
"model.diffusion_model.middle_block.(0|2).out_layers.(0|3)",
|
||||
"model.diffusion_model.middle_block.1.(norm|proj_in|proj_out)",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.(attn1|attn2).(to_k|to_q|to_v)",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.(norm1|norm2|norm3)",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.output_blocks.(0|1|2|3|5|6|8|9|10|11).0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.(0|3|6|9).0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.(0|3|6|9).0.in_layers.(0|2)",
|
||||
"model.diffusion_model.output_blocks.(0|3|6|9).0.out_layers.(0|3)",
|
||||
"model.diffusion_model.output_blocks.(3|4|5|6|7|8|9|10|11).1.(norm|proj_in|proj_out)",
|
||||
"model.diffusion_model.output_blocks.(3|4|5|6|7|8|9|10|11).1.transformer_blocks.0.(attn1|attn2).(to_k|to_q|to_v)",
|
||||
"model.diffusion_model.output_blocks.(3|4|5|6|7|8|9|10|11).1.transformer_blocks.0.(norm1|norm2|norm3)",
|
||||
"model.diffusion_model.output_blocks.(3|4|5|6|7|8|9|10|11).1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.output_blocks.(3|6|9|10).1.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"model.diffusion_model.output_blocks.(3|6|9|10).1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.output_blocks.(5|8).2.conv",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.output_blocks.2.1.conv"
|
||||
]
|
@ -0,0 +1,393 @@
|
||||
[
|
||||
"diffusion_model.time_embed.0",
|
||||
"diffusion_model.time_embed.2",
|
||||
"diffusion_model.input_blocks.0.0",
|
||||
"diffusion_model.input_blocks.1.0.in_layers.0",
|
||||
"diffusion_model.input_blocks.1.0.in_layers.2",
|
||||
"diffusion_model.input_blocks.1.0.emb_layers.1",
|
||||
"diffusion_model.input_blocks.1.0.out_layers.0",
|
||||
"diffusion_model.input_blocks.1.0.out_layers.3",
|
||||
"diffusion_model.input_blocks.1.1.norm",
|
||||
"diffusion_model.input_blocks.1.1.proj_in",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.input_blocks.1.1.proj_out",
|
||||
"diffusion_model.input_blocks.2.0.in_layers.0",
|
||||
"diffusion_model.input_blocks.2.0.in_layers.2",
|
||||
"diffusion_model.input_blocks.2.0.emb_layers.1",
|
||||
"diffusion_model.input_blocks.2.0.out_layers.0",
|
||||
"diffusion_model.input_blocks.2.0.out_layers.3",
|
||||
"diffusion_model.input_blocks.2.1.norm",
|
||||
"diffusion_model.input_blocks.2.1.proj_in",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.input_blocks.2.1.proj_out",
|
||||
"diffusion_model.input_blocks.3.0.op",
|
||||
"diffusion_model.input_blocks.4.0.in_layers.0",
|
||||
"diffusion_model.input_blocks.4.0.in_layers.2",
|
||||
"diffusion_model.input_blocks.4.0.emb_layers.1",
|
||||
"diffusion_model.input_blocks.4.0.out_layers.0",
|
||||
"diffusion_model.input_blocks.4.0.out_layers.3",
|
||||
"diffusion_model.input_blocks.4.0.skip_connection",
|
||||
"diffusion_model.input_blocks.4.1.norm",
|
||||
"diffusion_model.input_blocks.4.1.proj_in",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.input_blocks.4.1.proj_out",
|
||||
"diffusion_model.input_blocks.5.0.in_layers.0",
|
||||
"diffusion_model.input_blocks.5.0.in_layers.2",
|
||||
"diffusion_model.input_blocks.5.0.emb_layers.1",
|
||||
"diffusion_model.input_blocks.5.0.out_layers.0",
|
||||
"diffusion_model.input_blocks.5.0.out_layers.3",
|
||||
"diffusion_model.input_blocks.5.1.norm",
|
||||
"diffusion_model.input_blocks.5.1.proj_in",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.input_blocks.5.1.proj_out",
|
||||
"diffusion_model.input_blocks.6.0.op",
|
||||
"diffusion_model.input_blocks.7.0.in_layers.0",
|
||||
"diffusion_model.input_blocks.7.0.in_layers.2",
|
||||
"diffusion_model.input_blocks.7.0.emb_layers.1",
|
||||
"diffusion_model.input_blocks.7.0.out_layers.0",
|
||||
"diffusion_model.input_blocks.7.0.out_layers.3",
|
||||
"diffusion_model.input_blocks.7.0.skip_connection",
|
||||
"diffusion_model.input_blocks.7.1.norm",
|
||||
"diffusion_model.input_blocks.7.1.proj_in",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.input_blocks.7.1.proj_out",
|
||||
"diffusion_model.input_blocks.8.0.in_layers.0",
|
||||
"diffusion_model.input_blocks.8.0.in_layers.2",
|
||||
"diffusion_model.input_blocks.8.0.emb_layers.1",
|
||||
"diffusion_model.input_blocks.8.0.out_layers.0",
|
||||
"diffusion_model.input_blocks.8.0.out_layers.3",
|
||||
"diffusion_model.input_blocks.8.1.norm",
|
||||
"diffusion_model.input_blocks.8.1.proj_in",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.input_blocks.8.1.proj_out",
|
||||
"diffusion_model.input_blocks.9.0.op",
|
||||
"diffusion_model.input_blocks.10.0.in_layers.0",
|
||||
"diffusion_model.input_blocks.10.0.in_layers.2",
|
||||
"diffusion_model.input_blocks.10.0.emb_layers.1",
|
||||
"diffusion_model.input_blocks.10.0.out_layers.0",
|
||||
"diffusion_model.input_blocks.10.0.out_layers.3",
|
||||
"diffusion_model.input_blocks.11.0.in_layers.0",
|
||||
"diffusion_model.input_blocks.11.0.in_layers.2",
|
||||
"diffusion_model.input_blocks.11.0.emb_layers.1",
|
||||
"diffusion_model.input_blocks.11.0.out_layers.0",
|
||||
"diffusion_model.input_blocks.11.0.out_layers.3",
|
||||
"diffusion_model.middle_block.0.in_layers.0",
|
||||
"diffusion_model.middle_block.0.in_layers.2",
|
||||
"diffusion_model.middle_block.0.emb_layers.1",
|
||||
"diffusion_model.middle_block.0.out_layers.0",
|
||||
"diffusion_model.middle_block.0.out_layers.3",
|
||||
"diffusion_model.middle_block.1.norm",
|
||||
"diffusion_model.middle_block.1.proj_in",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.middle_block.1.proj_out",
|
||||
"diffusion_model.middle_block.2.in_layers.0",
|
||||
"diffusion_model.middle_block.2.in_layers.2",
|
||||
"diffusion_model.middle_block.2.emb_layers.1",
|
||||
"diffusion_model.middle_block.2.out_layers.0",
|
||||
"diffusion_model.middle_block.2.out_layers.3",
|
||||
"diffusion_model.output_blocks.0.0.in_layers.0",
|
||||
"diffusion_model.output_blocks.0.0.in_layers.2",
|
||||
"diffusion_model.output_blocks.0.0.emb_layers.1",
|
||||
"diffusion_model.output_blocks.0.0.out_layers.0",
|
||||
"diffusion_model.output_blocks.0.0.out_layers.3",
|
||||
"diffusion_model.output_blocks.0.0.skip_connection",
|
||||
"diffusion_model.output_blocks.1.0.in_layers.0",
|
||||
"diffusion_model.output_blocks.1.0.in_layers.2",
|
||||
"diffusion_model.output_blocks.1.0.emb_layers.1",
|
||||
"diffusion_model.output_blocks.1.0.out_layers.0",
|
||||
"diffusion_model.output_blocks.1.0.out_layers.3",
|
||||
"diffusion_model.output_blocks.1.0.skip_connection",
|
||||
"diffusion_model.output_blocks.2.0.in_layers.0",
|
||||
"diffusion_model.output_blocks.2.0.in_layers.2",
|
||||
"diffusion_model.output_blocks.2.0.emb_layers.1",
|
||||
"diffusion_model.output_blocks.2.0.out_layers.0",
|
||||
"diffusion_model.output_blocks.2.0.out_layers.3",
|
||||
"diffusion_model.output_blocks.2.0.skip_connection",
|
||||
"diffusion_model.output_blocks.2.1.conv",
|
||||
"diffusion_model.output_blocks.3.0.in_layers.0",
|
||||
"diffusion_model.output_blocks.3.0.in_layers.2",
|
||||
"diffusion_model.output_blocks.3.0.emb_layers.1",
|
||||
"diffusion_model.output_blocks.3.0.out_layers.0",
|
||||
"diffusion_model.output_blocks.3.0.out_layers.3",
|
||||
"diffusion_model.output_blocks.3.0.skip_connection",
|
||||
"diffusion_model.output_blocks.3.1.norm",
|
||||
"diffusion_model.output_blocks.3.1.proj_in",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.3.1.proj_out",
|
||||
"diffusion_model.output_blocks.4.0.in_layers.0",
|
||||
"diffusion_model.output_blocks.4.0.in_layers.2",
|
||||
"diffusion_model.output_blocks.4.0.emb_layers.1",
|
||||
"diffusion_model.output_blocks.4.0.out_layers.0",
|
||||
"diffusion_model.output_blocks.4.0.out_layers.3",
|
||||
"diffusion_model.output_blocks.4.0.skip_connection",
|
||||
"diffusion_model.output_blocks.4.1.norm",
|
||||
"diffusion_model.output_blocks.4.1.proj_in",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.4.1.proj_out",
|
||||
"diffusion_model.output_blocks.5.0.in_layers.0",
|
||||
"diffusion_model.output_blocks.5.0.in_layers.2",
|
||||
"diffusion_model.output_blocks.5.0.emb_layers.1",
|
||||
"diffusion_model.output_blocks.5.0.out_layers.0",
|
||||
"diffusion_model.output_blocks.5.0.out_layers.3",
|
||||
"diffusion_model.output_blocks.5.0.skip_connection",
|
||||
"diffusion_model.output_blocks.5.1.norm",
|
||||
"diffusion_model.output_blocks.5.1.proj_in",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.5.1.proj_out",
|
||||
"diffusion_model.output_blocks.5.2.conv",
|
||||
"diffusion_model.output_blocks.6.0.in_layers.0",
|
||||
"diffusion_model.output_blocks.6.0.in_layers.2",
|
||||
"diffusion_model.output_blocks.6.0.emb_layers.1",
|
||||
"diffusion_model.output_blocks.6.0.out_layers.0",
|
||||
"diffusion_model.output_blocks.6.0.out_layers.3",
|
||||
"diffusion_model.output_blocks.6.0.skip_connection",
|
||||
"diffusion_model.output_blocks.6.1.norm",
|
||||
"diffusion_model.output_blocks.6.1.proj_in",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.6.1.proj_out",
|
||||
"diffusion_model.output_blocks.7.0.in_layers.0",
|
||||
"diffusion_model.output_blocks.7.0.in_layers.2",
|
||||
"diffusion_model.output_blocks.7.0.emb_layers.1",
|
||||
"diffusion_model.output_blocks.7.0.out_layers.0",
|
||||
"diffusion_model.output_blocks.7.0.out_layers.3",
|
||||
"diffusion_model.output_blocks.7.0.skip_connection",
|
||||
"diffusion_model.output_blocks.7.1.norm",
|
||||
"diffusion_model.output_blocks.7.1.proj_in",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.7.1.proj_out",
|
||||
"diffusion_model.output_blocks.8.0.in_layers.0",
|
||||
"diffusion_model.output_blocks.8.0.in_layers.2",
|
||||
"diffusion_model.output_blocks.8.0.emb_layers.1",
|
||||
"diffusion_model.output_blocks.8.0.out_layers.0",
|
||||
"diffusion_model.output_blocks.8.0.out_layers.3",
|
||||
"diffusion_model.output_blocks.8.0.skip_connection",
|
||||
"diffusion_model.output_blocks.8.1.norm",
|
||||
"diffusion_model.output_blocks.8.1.proj_in",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.8.1.proj_out",
|
||||
"diffusion_model.output_blocks.8.2.conv",
|
||||
"diffusion_model.output_blocks.9.0.in_layers.0",
|
||||
"diffusion_model.output_blocks.9.0.in_layers.2",
|
||||
"diffusion_model.output_blocks.9.0.emb_layers.1",
|
||||
"diffusion_model.output_blocks.9.0.out_layers.0",
|
||||
"diffusion_model.output_blocks.9.0.out_layers.3",
|
||||
"diffusion_model.output_blocks.9.0.skip_connection",
|
||||
"diffusion_model.output_blocks.9.1.norm",
|
||||
"diffusion_model.output_blocks.9.1.proj_in",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.9.1.proj_out",
|
||||
"diffusion_model.output_blocks.10.0.in_layers.0",
|
||||
"diffusion_model.output_blocks.10.0.in_layers.2",
|
||||
"diffusion_model.output_blocks.10.0.emb_layers.1",
|
||||
"diffusion_model.output_blocks.10.0.out_layers.0",
|
||||
"diffusion_model.output_blocks.10.0.out_layers.3",
|
||||
"diffusion_model.output_blocks.10.0.skip_connection",
|
||||
"diffusion_model.output_blocks.10.1.norm",
|
||||
"diffusion_model.output_blocks.10.1.proj_in",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.10.1.proj_out",
|
||||
"diffusion_model.output_blocks.11.0.in_layers.0",
|
||||
"diffusion_model.output_blocks.11.0.in_layers.2",
|
||||
"diffusion_model.output_blocks.11.0.emb_layers.1",
|
||||
"diffusion_model.output_blocks.11.0.out_layers.0",
|
||||
"diffusion_model.output_blocks.11.0.out_layers.3",
|
||||
"diffusion_model.output_blocks.11.0.skip_connection",
|
||||
"diffusion_model.output_blocks.11.1.norm",
|
||||
"diffusion_model.output_blocks.11.1.proj_in",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_q",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_k",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_v",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2",
|
||||
"diffusion_model.output_blocks.11.1.proj_out",
|
||||
"diffusion_model.out.0",
|
||||
"diffusion_model.out.2"
|
||||
]
|
@ -0,0 +1,393 @@
|
||||
[
|
||||
"model.diffusion_model.input_blocks.0.0",
|
||||
"model.diffusion_model.input_blocks.1.0.emb_layers.1",
|
||||
"model.diffusion_model.input_blocks.1.0.in_layers.0",
|
||||
"model.diffusion_model.input_blocks.1.0.in_layers.2",
|
||||
"model.diffusion_model.input_blocks.1.0.out_layers.0",
|
||||
"model.diffusion_model.input_blocks.1.0.out_layers.3",
|
||||
"model.diffusion_model.input_blocks.1.1.norm",
|
||||
"model.diffusion_model.input_blocks.1.1.proj_in",
|
||||
"model.diffusion_model.input_blocks.1.1.proj_out",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.input_blocks.10.0.emb_layers.1",
|
||||
"model.diffusion_model.input_blocks.10.0.in_layers.0",
|
||||
"model.diffusion_model.input_blocks.10.0.in_layers.2",
|
||||
"model.diffusion_model.input_blocks.10.0.out_layers.0",
|
||||
"model.diffusion_model.input_blocks.10.0.out_layers.3",
|
||||
"model.diffusion_model.input_blocks.11.0.emb_layers.1",
|
||||
"model.diffusion_model.input_blocks.11.0.in_layers.0",
|
||||
"model.diffusion_model.input_blocks.11.0.in_layers.2",
|
||||
"model.diffusion_model.input_blocks.11.0.out_layers.0",
|
||||
"model.diffusion_model.input_blocks.11.0.out_layers.3",
|
||||
"model.diffusion_model.input_blocks.2.0.emb_layers.1",
|
||||
"model.diffusion_model.input_blocks.2.0.in_layers.0",
|
||||
"model.diffusion_model.input_blocks.2.0.in_layers.2",
|
||||
"model.diffusion_model.input_blocks.2.0.out_layers.0",
|
||||
"model.diffusion_model.input_blocks.2.0.out_layers.3",
|
||||
"model.diffusion_model.input_blocks.2.1.norm",
|
||||
"model.diffusion_model.input_blocks.2.1.proj_in",
|
||||
"model.diffusion_model.input_blocks.2.1.proj_out",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.input_blocks.3.0.op",
|
||||
"model.diffusion_model.input_blocks.4.0.emb_layers.1",
|
||||
"model.diffusion_model.input_blocks.4.0.in_layers.0",
|
||||
"model.diffusion_model.input_blocks.4.0.in_layers.2",
|
||||
"model.diffusion_model.input_blocks.4.0.out_layers.0",
|
||||
"model.diffusion_model.input_blocks.4.0.out_layers.3",
|
||||
"model.diffusion_model.input_blocks.4.0.skip_connection",
|
||||
"model.diffusion_model.input_blocks.4.1.norm",
|
||||
"model.diffusion_model.input_blocks.4.1.proj_in",
|
||||
"model.diffusion_model.input_blocks.4.1.proj_out",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.input_blocks.5.0.emb_layers.1",
|
||||
"model.diffusion_model.input_blocks.5.0.in_layers.0",
|
||||
"model.diffusion_model.input_blocks.5.0.in_layers.2",
|
||||
"model.diffusion_model.input_blocks.5.0.out_layers.0",
|
||||
"model.diffusion_model.input_blocks.5.0.out_layers.3",
|
||||
"model.diffusion_model.input_blocks.5.1.norm",
|
||||
"model.diffusion_model.input_blocks.5.1.proj_in",
|
||||
"model.diffusion_model.input_blocks.5.1.proj_out",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.input_blocks.6.0.op",
|
||||
"model.diffusion_model.input_blocks.7.0.emb_layers.1",
|
||||
"model.diffusion_model.input_blocks.7.0.in_layers.0",
|
||||
"model.diffusion_model.input_blocks.7.0.in_layers.2",
|
||||
"model.diffusion_model.input_blocks.7.0.out_layers.0",
|
||||
"model.diffusion_model.input_blocks.7.0.out_layers.3",
|
||||
"model.diffusion_model.input_blocks.7.0.skip_connection",
|
||||
"model.diffusion_model.input_blocks.7.1.norm",
|
||||
"model.diffusion_model.input_blocks.7.1.proj_in",
|
||||
"model.diffusion_model.input_blocks.7.1.proj_out",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.input_blocks.8.0.emb_layers.1",
|
||||
"model.diffusion_model.input_blocks.8.0.in_layers.0",
|
||||
"model.diffusion_model.input_blocks.8.0.in_layers.2",
|
||||
"model.diffusion_model.input_blocks.8.0.out_layers.0",
|
||||
"model.diffusion_model.input_blocks.8.0.out_layers.3",
|
||||
"model.diffusion_model.input_blocks.8.1.norm",
|
||||
"model.diffusion_model.input_blocks.8.1.proj_in",
|
||||
"model.diffusion_model.input_blocks.8.1.proj_out",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.input_blocks.9.0.op",
|
||||
"model.diffusion_model.middle_block.0.emb_layers.1",
|
||||
"model.diffusion_model.middle_block.0.in_layers.0",
|
||||
"model.diffusion_model.middle_block.0.in_layers.2",
|
||||
"model.diffusion_model.middle_block.0.out_layers.0",
|
||||
"model.diffusion_model.middle_block.0.out_layers.3",
|
||||
"model.diffusion_model.middle_block.1.norm",
|
||||
"model.diffusion_model.middle_block.1.proj_in",
|
||||
"model.diffusion_model.middle_block.1.proj_out",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.middle_block.2.emb_layers.1",
|
||||
"model.diffusion_model.middle_block.2.in_layers.0",
|
||||
"model.diffusion_model.middle_block.2.in_layers.2",
|
||||
"model.diffusion_model.middle_block.2.out_layers.0",
|
||||
"model.diffusion_model.middle_block.2.out_layers.3",
|
||||
"model.diffusion_model.out.0",
|
||||
"model.diffusion_model.out.2",
|
||||
"model.diffusion_model.output_blocks.0.0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.0.0.in_layers.0",
|
||||
"model.diffusion_model.output_blocks.0.0.in_layers.2",
|
||||
"model.diffusion_model.output_blocks.0.0.out_layers.0",
|
||||
"model.diffusion_model.output_blocks.0.0.out_layers.3",
|
||||
"model.diffusion_model.output_blocks.0.0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.1.0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.1.0.in_layers.0",
|
||||
"model.diffusion_model.output_blocks.1.0.in_layers.2",
|
||||
"model.diffusion_model.output_blocks.1.0.out_layers.0",
|
||||
"model.diffusion_model.output_blocks.1.0.out_layers.3",
|
||||
"model.diffusion_model.output_blocks.1.0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.10.0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.10.0.in_layers.0",
|
||||
"model.diffusion_model.output_blocks.10.0.in_layers.2",
|
||||
"model.diffusion_model.output_blocks.10.0.out_layers.0",
|
||||
"model.diffusion_model.output_blocks.10.0.out_layers.3",
|
||||
"model.diffusion_model.output_blocks.10.0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.10.1.norm",
|
||||
"model.diffusion_model.output_blocks.10.1.proj_in",
|
||||
"model.diffusion_model.output_blocks.10.1.proj_out",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.output_blocks.11.0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.11.0.in_layers.0",
|
||||
"model.diffusion_model.output_blocks.11.0.in_layers.2",
|
||||
"model.diffusion_model.output_blocks.11.0.out_layers.0",
|
||||
"model.diffusion_model.output_blocks.11.0.out_layers.3",
|
||||
"model.diffusion_model.output_blocks.11.0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.11.1.norm",
|
||||
"model.diffusion_model.output_blocks.11.1.proj_in",
|
||||
"model.diffusion_model.output_blocks.11.1.proj_out",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.output_blocks.2.0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.2.0.in_layers.0",
|
||||
"model.diffusion_model.output_blocks.2.0.in_layers.2",
|
||||
"model.diffusion_model.output_blocks.2.0.out_layers.0",
|
||||
"model.diffusion_model.output_blocks.2.0.out_layers.3",
|
||||
"model.diffusion_model.output_blocks.2.0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.2.1.conv",
|
||||
"model.diffusion_model.output_blocks.3.0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.3.0.in_layers.0",
|
||||
"model.diffusion_model.output_blocks.3.0.in_layers.2",
|
||||
"model.diffusion_model.output_blocks.3.0.out_layers.0",
|
||||
"model.diffusion_model.output_blocks.3.0.out_layers.3",
|
||||
"model.diffusion_model.output_blocks.3.0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.3.1.norm",
|
||||
"model.diffusion_model.output_blocks.3.1.proj_in",
|
||||
"model.diffusion_model.output_blocks.3.1.proj_out",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.output_blocks.4.0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.4.0.in_layers.0",
|
||||
"model.diffusion_model.output_blocks.4.0.in_layers.2",
|
||||
"model.diffusion_model.output_blocks.4.0.out_layers.0",
|
||||
"model.diffusion_model.output_blocks.4.0.out_layers.3",
|
||||
"model.diffusion_model.output_blocks.4.0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.4.1.norm",
|
||||
"model.diffusion_model.output_blocks.4.1.proj_in",
|
||||
"model.diffusion_model.output_blocks.4.1.proj_out",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.output_blocks.5.0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.5.0.in_layers.0",
|
||||
"model.diffusion_model.output_blocks.5.0.in_layers.2",
|
||||
"model.diffusion_model.output_blocks.5.0.out_layers.0",
|
||||
"model.diffusion_model.output_blocks.5.0.out_layers.3",
|
||||
"model.diffusion_model.output_blocks.5.0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.5.1.norm",
|
||||
"model.diffusion_model.output_blocks.5.1.proj_in",
|
||||
"model.diffusion_model.output_blocks.5.1.proj_out",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.output_blocks.5.2.conv",
|
||||
"model.diffusion_model.output_blocks.6.0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.6.0.in_layers.0",
|
||||
"model.diffusion_model.output_blocks.6.0.in_layers.2",
|
||||
"model.diffusion_model.output_blocks.6.0.out_layers.0",
|
||||
"model.diffusion_model.output_blocks.6.0.out_layers.3",
|
||||
"model.diffusion_model.output_blocks.6.0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.6.1.norm",
|
||||
"model.diffusion_model.output_blocks.6.1.proj_in",
|
||||
"model.diffusion_model.output_blocks.6.1.proj_out",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.output_blocks.7.0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.7.0.in_layers.0",
|
||||
"model.diffusion_model.output_blocks.7.0.in_layers.2",
|
||||
"model.diffusion_model.output_blocks.7.0.out_layers.0",
|
||||
"model.diffusion_model.output_blocks.7.0.out_layers.3",
|
||||
"model.diffusion_model.output_blocks.7.0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.7.1.norm",
|
||||
"model.diffusion_model.output_blocks.7.1.proj_in",
|
||||
"model.diffusion_model.output_blocks.7.1.proj_out",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.output_blocks.8.0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.8.0.in_layers.0",
|
||||
"model.diffusion_model.output_blocks.8.0.in_layers.2",
|
||||
"model.diffusion_model.output_blocks.8.0.out_layers.0",
|
||||
"model.diffusion_model.output_blocks.8.0.out_layers.3",
|
||||
"model.diffusion_model.output_blocks.8.0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.8.1.norm",
|
||||
"model.diffusion_model.output_blocks.8.1.proj_in",
|
||||
"model.diffusion_model.output_blocks.8.1.proj_out",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.output_blocks.8.2.conv",
|
||||
"model.diffusion_model.output_blocks.9.0.emb_layers.1",
|
||||
"model.diffusion_model.output_blocks.9.0.in_layers.0",
|
||||
"model.diffusion_model.output_blocks.9.0.in_layers.2",
|
||||
"model.diffusion_model.output_blocks.9.0.out_layers.0",
|
||||
"model.diffusion_model.output_blocks.9.0.out_layers.3",
|
||||
"model.diffusion_model.output_blocks.9.0.skip_connection",
|
||||
"model.diffusion_model.output_blocks.9.1.norm",
|
||||
"model.diffusion_model.output_blocks.9.1.proj_in",
|
||||
"model.diffusion_model.output_blocks.9.1.proj_out",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_k",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_q",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_v",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2",
|
||||
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3",
|
||||
"model.diffusion_model.time_embed.0",
|
||||
"model.diffusion_model.time_embed.2"
|
||||
]
|
@ -0,0 +1,43 @@
|
||||
[
|
||||
"(conv_in|conv_norm_out|conv_out)",
|
||||
"(down_blocks|up_blocks).2.attentions.0.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"(down_blocks|up_blocks).2.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"(down_blocks|up_blocks).2.attentions.1.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"(down_blocks|up_blocks).2.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.(0|1).attentions.0.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"down_blocks.(0|1).attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.(0|1).attentions.1.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"down_blocks.(0|1).attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.(0|1|2).attentions.(0|1).(norm|proj_in|proj_out)",
|
||||
"down_blocks.(0|1|2).attentions.(0|1).transformer_blocks.0.(attn1|attn2).(to_k|to_q|to_v)",
|
||||
"down_blocks.(0|1|2).attentions.(0|1).transformer_blocks.0.(norm1|norm2|norm3)",
|
||||
"down_blocks.(0|1|2).attentions.(0|1).transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.(0|1|2).downsamplers.0.conv",
|
||||
"down_blocks.(0|3).resnets.(0|1).(conv1|conv2|norm1|norm2|time_emb_proj)",
|
||||
"down_blocks.(1|2).resnets.0.(conv1|conv2|conv_shortcut|norm1|norm2|time_emb_proj)",
|
||||
"down_blocks.(1|2).resnets.1.(conv1|conv2|norm1|norm2|time_emb_proj)",
|
||||
"mid_block.attentions.0.(norm|proj_in|proj_out)",
|
||||
"mid_block.attentions.0.transformer_blocks.0.(attn1|attn2).(to_k|to_q|to_v)",
|
||||
"mid_block.attentions.0.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"mid_block.attentions.0.transformer_blocks.0.(norm1|norm2|norm3)",
|
||||
"mid_block.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"mid_block.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"mid_block.resnets.(0|1).(conv1|conv2|norm1|norm2|time_emb_proj)",
|
||||
"time_embedding.(linear_1|linear_2)",
|
||||
"up_blocks.(0|1|2).upsamplers.0.conv",
|
||||
"up_blocks.(0|1|2|3).resnets.(0|1|2).(conv1|conv2|conv_shortcut|norm1|norm2|time_emb_proj)",
|
||||
"up_blocks.(1|2|3).attentions.(0|1|2).(norm|proj_in|proj_out)",
|
||||
"up_blocks.(1|2|3).attentions.(0|1|2).transformer_blocks.0.(attn1|attn2).(to_k|to_q|to_v)",
|
||||
"up_blocks.(1|2|3).attentions.(0|1|2).transformer_blocks.0.(norm1|norm2|norm3)",
|
||||
"up_blocks.(1|2|3).attentions.(0|1|2).transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.(1|2|3).attentions.2.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"up_blocks.(1|2|3).attentions.2.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.(attn1|attn2).to_out.0",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.ff.net.2"
|
||||
]
|
@ -0,0 +1,393 @@
|
||||
[
|
||||
"time_embedding.linear_1",
|
||||
"time_embedding.linear_2",
|
||||
"conv_in",
|
||||
"down_blocks.0.resnets.0.norm1",
|
||||
"down_blocks.0.resnets.0.conv1",
|
||||
"down_blocks.0.resnets.0.time_emb_proj",
|
||||
"down_blocks.0.resnets.0.norm2",
|
||||
"down_blocks.0.resnets.0.conv2",
|
||||
"down_blocks.0.attentions.0.norm",
|
||||
"down_blocks.0.attentions.0.proj_in",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm1",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm2",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm3",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.0.attentions.0.proj_out",
|
||||
"down_blocks.0.resnets.1.norm1",
|
||||
"down_blocks.0.resnets.1.conv1",
|
||||
"down_blocks.0.resnets.1.time_emb_proj",
|
||||
"down_blocks.0.resnets.1.norm2",
|
||||
"down_blocks.0.resnets.1.conv2",
|
||||
"down_blocks.0.attentions.1.norm",
|
||||
"down_blocks.0.attentions.1.proj_in",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm1",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm2",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm3",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.0.attentions.1.proj_out",
|
||||
"down_blocks.0.downsamplers.0.conv",
|
||||
"down_blocks.1.resnets.0.norm1",
|
||||
"down_blocks.1.resnets.0.conv1",
|
||||
"down_blocks.1.resnets.0.time_emb_proj",
|
||||
"down_blocks.1.resnets.0.norm2",
|
||||
"down_blocks.1.resnets.0.conv2",
|
||||
"down_blocks.1.resnets.0.conv_shortcut",
|
||||
"down_blocks.1.attentions.0.norm",
|
||||
"down_blocks.1.attentions.0.proj_in",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm1",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm2",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm3",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.1.attentions.0.proj_out",
|
||||
"down_blocks.1.resnets.1.norm1",
|
||||
"down_blocks.1.resnets.1.conv1",
|
||||
"down_blocks.1.resnets.1.time_emb_proj",
|
||||
"down_blocks.1.resnets.1.norm2",
|
||||
"down_blocks.1.resnets.1.conv2",
|
||||
"down_blocks.1.attentions.1.norm",
|
||||
"down_blocks.1.attentions.1.proj_in",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm1",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm2",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm3",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.1.attentions.1.proj_out",
|
||||
"down_blocks.1.downsamplers.0.conv",
|
||||
"down_blocks.2.resnets.0.norm1",
|
||||
"down_blocks.2.resnets.0.conv1",
|
||||
"down_blocks.2.resnets.0.time_emb_proj",
|
||||
"down_blocks.2.resnets.0.norm2",
|
||||
"down_blocks.2.resnets.0.conv2",
|
||||
"down_blocks.2.resnets.0.conv_shortcut",
|
||||
"down_blocks.2.attentions.0.norm",
|
||||
"down_blocks.2.attentions.0.proj_in",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm1",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm2",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm3",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.2.attentions.0.proj_out",
|
||||
"down_blocks.2.resnets.1.norm1",
|
||||
"down_blocks.2.resnets.1.conv1",
|
||||
"down_blocks.2.resnets.1.time_emb_proj",
|
||||
"down_blocks.2.resnets.1.norm2",
|
||||
"down_blocks.2.resnets.1.conv2",
|
||||
"down_blocks.2.attentions.1.norm",
|
||||
"down_blocks.2.attentions.1.proj_in",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm1",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm2",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm3",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.2.attentions.1.proj_out",
|
||||
"down_blocks.2.downsamplers.0.conv",
|
||||
"down_blocks.3.resnets.0.norm1",
|
||||
"down_blocks.3.resnets.0.conv1",
|
||||
"down_blocks.3.resnets.0.time_emb_proj",
|
||||
"down_blocks.3.resnets.0.norm2",
|
||||
"down_blocks.3.resnets.0.conv2",
|
||||
"down_blocks.3.resnets.1.norm1",
|
||||
"down_blocks.3.resnets.1.conv1",
|
||||
"down_blocks.3.resnets.1.time_emb_proj",
|
||||
"down_blocks.3.resnets.1.norm2",
|
||||
"down_blocks.3.resnets.1.conv2",
|
||||
"mid_block.resnets.0.norm1",
|
||||
"mid_block.resnets.0.conv1",
|
||||
"mid_block.resnets.0.time_emb_proj",
|
||||
"mid_block.resnets.0.norm2",
|
||||
"mid_block.resnets.0.conv2",
|
||||
"mid_block.attentions.0.norm",
|
||||
"mid_block.attentions.0.proj_in",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm1",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm2",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm3",
|
||||
"mid_block.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"mid_block.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"mid_block.attentions.0.proj_out",
|
||||
"mid_block.resnets.1.norm1",
|
||||
"mid_block.resnets.1.conv1",
|
||||
"mid_block.resnets.1.time_emb_proj",
|
||||
"mid_block.resnets.1.norm2",
|
||||
"mid_block.resnets.1.conv2",
|
||||
"up_blocks.0.resnets.0.norm1",
|
||||
"up_blocks.0.resnets.0.conv1",
|
||||
"up_blocks.0.resnets.0.time_emb_proj",
|
||||
"up_blocks.0.resnets.0.norm2",
|
||||
"up_blocks.0.resnets.0.conv2",
|
||||
"up_blocks.0.resnets.0.conv_shortcut",
|
||||
"up_blocks.0.resnets.1.norm1",
|
||||
"up_blocks.0.resnets.1.conv1",
|
||||
"up_blocks.0.resnets.1.time_emb_proj",
|
||||
"up_blocks.0.resnets.1.norm2",
|
||||
"up_blocks.0.resnets.1.conv2",
|
||||
"up_blocks.0.resnets.1.conv_shortcut",
|
||||
"up_blocks.0.resnets.2.norm1",
|
||||
"up_blocks.0.resnets.2.conv1",
|
||||
"up_blocks.0.resnets.2.time_emb_proj",
|
||||
"up_blocks.0.resnets.2.norm2",
|
||||
"up_blocks.0.resnets.2.conv2",
|
||||
"up_blocks.0.resnets.2.conv_shortcut",
|
||||
"up_blocks.0.upsamplers.0.conv",
|
||||
"up_blocks.1.resnets.0.norm1",
|
||||
"up_blocks.1.resnets.0.conv1",
|
||||
"up_blocks.1.resnets.0.time_emb_proj",
|
||||
"up_blocks.1.resnets.0.norm2",
|
||||
"up_blocks.1.resnets.0.conv2",
|
||||
"up_blocks.1.resnets.0.conv_shortcut",
|
||||
"up_blocks.1.attentions.0.norm",
|
||||
"up_blocks.1.attentions.0.proj_in",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.norm1",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.norm2",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.norm3",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.1.attentions.0.proj_out",
|
||||
"up_blocks.1.resnets.1.norm1",
|
||||
"up_blocks.1.resnets.1.conv1",
|
||||
"up_blocks.1.resnets.1.time_emb_proj",
|
||||
"up_blocks.1.resnets.1.norm2",
|
||||
"up_blocks.1.resnets.1.conv2",
|
||||
"up_blocks.1.resnets.1.conv_shortcut",
|
||||
"up_blocks.1.attentions.1.norm",
|
||||
"up_blocks.1.attentions.1.proj_in",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.1.attentions.1.proj_out",
|
||||
"up_blocks.1.resnets.2.norm1",
|
||||
"up_blocks.1.resnets.2.conv1",
|
||||
"up_blocks.1.resnets.2.time_emb_proj",
|
||||
"up_blocks.1.resnets.2.norm2",
|
||||
"up_blocks.1.resnets.2.conv2",
|
||||
"up_blocks.1.resnets.2.conv_shortcut",
|
||||
"up_blocks.1.attentions.2.norm",
|
||||
"up_blocks.1.attentions.2.proj_in",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.norm1",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.norm2",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.norm3",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.1.attentions.2.proj_out",
|
||||
"up_blocks.1.upsamplers.0.conv",
|
||||
"up_blocks.2.resnets.0.norm1",
|
||||
"up_blocks.2.resnets.0.conv1",
|
||||
"up_blocks.2.resnets.0.time_emb_proj",
|
||||
"up_blocks.2.resnets.0.norm2",
|
||||
"up_blocks.2.resnets.0.conv2",
|
||||
"up_blocks.2.resnets.0.conv_shortcut",
|
||||
"up_blocks.2.attentions.0.norm",
|
||||
"up_blocks.2.attentions.0.proj_in",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.norm1",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.norm2",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.norm3",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.2.attentions.0.proj_out",
|
||||
"up_blocks.2.resnets.1.norm1",
|
||||
"up_blocks.2.resnets.1.conv1",
|
||||
"up_blocks.2.resnets.1.time_emb_proj",
|
||||
"up_blocks.2.resnets.1.norm2",
|
||||
"up_blocks.2.resnets.1.conv2",
|
||||
"up_blocks.2.resnets.1.conv_shortcut",
|
||||
"up_blocks.2.attentions.1.norm",
|
||||
"up_blocks.2.attentions.1.proj_in",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.2.attentions.1.proj_out",
|
||||
"up_blocks.2.resnets.2.norm1",
|
||||
"up_blocks.2.resnets.2.conv1",
|
||||
"up_blocks.2.resnets.2.time_emb_proj",
|
||||
"up_blocks.2.resnets.2.norm2",
|
||||
"up_blocks.2.resnets.2.conv2",
|
||||
"up_blocks.2.resnets.2.conv_shortcut",
|
||||
"up_blocks.2.attentions.2.norm",
|
||||
"up_blocks.2.attentions.2.proj_in",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.norm1",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.norm2",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.norm3",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.2.attentions.2.proj_out",
|
||||
"up_blocks.2.upsamplers.0.conv",
|
||||
"up_blocks.3.resnets.0.norm1",
|
||||
"up_blocks.3.resnets.0.conv1",
|
||||
"up_blocks.3.resnets.0.time_emb_proj",
|
||||
"up_blocks.3.resnets.0.norm2",
|
||||
"up_blocks.3.resnets.0.conv2",
|
||||
"up_blocks.3.resnets.0.conv_shortcut",
|
||||
"up_blocks.3.attentions.0.norm",
|
||||
"up_blocks.3.attentions.0.proj_in",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.norm1",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.norm2",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.norm3",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.3.attentions.0.proj_out",
|
||||
"up_blocks.3.resnets.1.norm1",
|
||||
"up_blocks.3.resnets.1.conv1",
|
||||
"up_blocks.3.resnets.1.time_emb_proj",
|
||||
"up_blocks.3.resnets.1.norm2",
|
||||
"up_blocks.3.resnets.1.conv2",
|
||||
"up_blocks.3.resnets.1.conv_shortcut",
|
||||
"up_blocks.3.attentions.1.norm",
|
||||
"up_blocks.3.attentions.1.proj_in",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.3.attentions.1.proj_out",
|
||||
"up_blocks.3.resnets.2.norm1",
|
||||
"up_blocks.3.resnets.2.conv1",
|
||||
"up_blocks.3.resnets.2.time_emb_proj",
|
||||
"up_blocks.3.resnets.2.norm2",
|
||||
"up_blocks.3.resnets.2.conv2",
|
||||
"up_blocks.3.resnets.2.conv_shortcut",
|
||||
"up_blocks.3.attentions.2.norm",
|
||||
"up_blocks.3.attentions.2.proj_in",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.norm1",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.norm2",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.norm3",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.3.attentions.2.proj_out",
|
||||
"conv_norm_out",
|
||||
"conv_out"
|
||||
]
|
@ -0,0 +1,393 @@
|
||||
[
|
||||
"conv_in",
|
||||
"conv_norm_out",
|
||||
"conv_out",
|
||||
"down_blocks.0.attentions.0.norm",
|
||||
"down_blocks.0.attentions.0.proj_in",
|
||||
"down_blocks.0.attentions.0.proj_out",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm1",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm2",
|
||||
"down_blocks.0.attentions.0.transformer_blocks.0.norm3",
|
||||
"down_blocks.0.attentions.1.norm",
|
||||
"down_blocks.0.attentions.1.proj_in",
|
||||
"down_blocks.0.attentions.1.proj_out",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm1",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm2",
|
||||
"down_blocks.0.attentions.1.transformer_blocks.0.norm3",
|
||||
"down_blocks.0.downsamplers.0.conv",
|
||||
"down_blocks.0.resnets.0.conv1",
|
||||
"down_blocks.0.resnets.0.conv2",
|
||||
"down_blocks.0.resnets.0.norm1",
|
||||
"down_blocks.0.resnets.0.norm2",
|
||||
"down_blocks.0.resnets.0.time_emb_proj",
|
||||
"down_blocks.0.resnets.1.conv1",
|
||||
"down_blocks.0.resnets.1.conv2",
|
||||
"down_blocks.0.resnets.1.norm1",
|
||||
"down_blocks.0.resnets.1.norm2",
|
||||
"down_blocks.0.resnets.1.time_emb_proj",
|
||||
"down_blocks.1.attentions.0.norm",
|
||||
"down_blocks.1.attentions.0.proj_in",
|
||||
"down_blocks.1.attentions.0.proj_out",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm1",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm2",
|
||||
"down_blocks.1.attentions.0.transformer_blocks.0.norm3",
|
||||
"down_blocks.1.attentions.1.norm",
|
||||
"down_blocks.1.attentions.1.proj_in",
|
||||
"down_blocks.1.attentions.1.proj_out",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm1",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm2",
|
||||
"down_blocks.1.attentions.1.transformer_blocks.0.norm3",
|
||||
"down_blocks.1.downsamplers.0.conv",
|
||||
"down_blocks.1.resnets.0.conv1",
|
||||
"down_blocks.1.resnets.0.conv2",
|
||||
"down_blocks.1.resnets.0.conv_shortcut",
|
||||
"down_blocks.1.resnets.0.norm1",
|
||||
"down_blocks.1.resnets.0.norm2",
|
||||
"down_blocks.1.resnets.0.time_emb_proj",
|
||||
"down_blocks.1.resnets.1.conv1",
|
||||
"down_blocks.1.resnets.1.conv2",
|
||||
"down_blocks.1.resnets.1.norm1",
|
||||
"down_blocks.1.resnets.1.norm2",
|
||||
"down_blocks.1.resnets.1.time_emb_proj",
|
||||
"down_blocks.2.attentions.0.norm",
|
||||
"down_blocks.2.attentions.0.proj_in",
|
||||
"down_blocks.2.attentions.0.proj_out",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm1",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm2",
|
||||
"down_blocks.2.attentions.0.transformer_blocks.0.norm3",
|
||||
"down_blocks.2.attentions.1.norm",
|
||||
"down_blocks.2.attentions.1.proj_in",
|
||||
"down_blocks.2.attentions.1.proj_out",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm1",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm2",
|
||||
"down_blocks.2.attentions.1.transformer_blocks.0.norm3",
|
||||
"down_blocks.2.downsamplers.0.conv",
|
||||
"down_blocks.2.resnets.0.conv1",
|
||||
"down_blocks.2.resnets.0.conv2",
|
||||
"down_blocks.2.resnets.0.conv_shortcut",
|
||||
"down_blocks.2.resnets.0.norm1",
|
||||
"down_blocks.2.resnets.0.norm2",
|
||||
"down_blocks.2.resnets.0.time_emb_proj",
|
||||
"down_blocks.2.resnets.1.conv1",
|
||||
"down_blocks.2.resnets.1.conv2",
|
||||
"down_blocks.2.resnets.1.norm1",
|
||||
"down_blocks.2.resnets.1.norm2",
|
||||
"down_blocks.2.resnets.1.time_emb_proj",
|
||||
"down_blocks.3.resnets.0.conv1",
|
||||
"down_blocks.3.resnets.0.conv2",
|
||||
"down_blocks.3.resnets.0.norm1",
|
||||
"down_blocks.3.resnets.0.norm2",
|
||||
"down_blocks.3.resnets.0.time_emb_proj",
|
||||
"down_blocks.3.resnets.1.conv1",
|
||||
"down_blocks.3.resnets.1.conv2",
|
||||
"down_blocks.3.resnets.1.norm1",
|
||||
"down_blocks.3.resnets.1.norm2",
|
||||
"down_blocks.3.resnets.1.time_emb_proj",
|
||||
"mid_block.attentions.0.norm",
|
||||
"mid_block.attentions.0.proj_in",
|
||||
"mid_block.attentions.0.proj_out",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"mid_block.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"mid_block.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm1",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm2",
|
||||
"mid_block.attentions.0.transformer_blocks.0.norm3",
|
||||
"mid_block.resnets.0.conv1",
|
||||
"mid_block.resnets.0.conv2",
|
||||
"mid_block.resnets.0.norm1",
|
||||
"mid_block.resnets.0.norm2",
|
||||
"mid_block.resnets.0.time_emb_proj",
|
||||
"mid_block.resnets.1.conv1",
|
||||
"mid_block.resnets.1.conv2",
|
||||
"mid_block.resnets.1.norm1",
|
||||
"mid_block.resnets.1.norm2",
|
||||
"mid_block.resnets.1.time_emb_proj",
|
||||
"time_embedding.linear_1",
|
||||
"time_embedding.linear_2",
|
||||
"up_blocks.0.resnets.0.conv1",
|
||||
"up_blocks.0.resnets.0.conv2",
|
||||
"up_blocks.0.resnets.0.conv_shortcut",
|
||||
"up_blocks.0.resnets.0.norm1",
|
||||
"up_blocks.0.resnets.0.norm2",
|
||||
"up_blocks.0.resnets.0.time_emb_proj",
|
||||
"up_blocks.0.resnets.1.conv1",
|
||||
"up_blocks.0.resnets.1.conv2",
|
||||
"up_blocks.0.resnets.1.conv_shortcut",
|
||||
"up_blocks.0.resnets.1.norm1",
|
||||
"up_blocks.0.resnets.1.norm2",
|
||||
"up_blocks.0.resnets.1.time_emb_proj",
|
||||
"up_blocks.0.resnets.2.conv1",
|
||||
"up_blocks.0.resnets.2.conv2",
|
||||
"up_blocks.0.resnets.2.conv_shortcut",
|
||||
"up_blocks.0.resnets.2.norm1",
|
||||
"up_blocks.0.resnets.2.norm2",
|
||||
"up_blocks.0.resnets.2.time_emb_proj",
|
||||
"up_blocks.0.upsamplers.0.conv",
|
||||
"up_blocks.1.attentions.0.norm",
|
||||
"up_blocks.1.attentions.0.proj_in",
|
||||
"up_blocks.1.attentions.0.proj_out",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.norm1",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.norm2",
|
||||
"up_blocks.1.attentions.0.transformer_blocks.0.norm3",
|
||||
"up_blocks.1.attentions.1.norm",
|
||||
"up_blocks.1.attentions.1.proj_in",
|
||||
"up_blocks.1.attentions.1.proj_out",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.1.attentions.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.1.attentions.2.norm",
|
||||
"up_blocks.1.attentions.2.proj_in",
|
||||
"up_blocks.1.attentions.2.proj_out",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.norm1",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.norm2",
|
||||
"up_blocks.1.attentions.2.transformer_blocks.0.norm3",
|
||||
"up_blocks.1.resnets.0.conv1",
|
||||
"up_blocks.1.resnets.0.conv2",
|
||||
"up_blocks.1.resnets.0.conv_shortcut",
|
||||
"up_blocks.1.resnets.0.norm1",
|
||||
"up_blocks.1.resnets.0.norm2",
|
||||
"up_blocks.1.resnets.0.time_emb_proj",
|
||||
"up_blocks.1.resnets.1.conv1",
|
||||
"up_blocks.1.resnets.1.conv2",
|
||||
"up_blocks.1.resnets.1.conv_shortcut",
|
||||
"up_blocks.1.resnets.1.norm1",
|
||||
"up_blocks.1.resnets.1.norm2",
|
||||
"up_blocks.1.resnets.1.time_emb_proj",
|
||||
"up_blocks.1.resnets.2.conv1",
|
||||
"up_blocks.1.resnets.2.conv2",
|
||||
"up_blocks.1.resnets.2.conv_shortcut",
|
||||
"up_blocks.1.resnets.2.norm1",
|
||||
"up_blocks.1.resnets.2.norm2",
|
||||
"up_blocks.1.resnets.2.time_emb_proj",
|
||||
"up_blocks.1.upsamplers.0.conv",
|
||||
"up_blocks.2.attentions.0.norm",
|
||||
"up_blocks.2.attentions.0.proj_in",
|
||||
"up_blocks.2.attentions.0.proj_out",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.norm1",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.norm2",
|
||||
"up_blocks.2.attentions.0.transformer_blocks.0.norm3",
|
||||
"up_blocks.2.attentions.1.norm",
|
||||
"up_blocks.2.attentions.1.proj_in",
|
||||
"up_blocks.2.attentions.1.proj_out",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.2.attentions.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.2.attentions.2.norm",
|
||||
"up_blocks.2.attentions.2.proj_in",
|
||||
"up_blocks.2.attentions.2.proj_out",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.norm1",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.norm2",
|
||||
"up_blocks.2.attentions.2.transformer_blocks.0.norm3",
|
||||
"up_blocks.2.resnets.0.conv1",
|
||||
"up_blocks.2.resnets.0.conv2",
|
||||
"up_blocks.2.resnets.0.conv_shortcut",
|
||||
"up_blocks.2.resnets.0.norm1",
|
||||
"up_blocks.2.resnets.0.norm2",
|
||||
"up_blocks.2.resnets.0.time_emb_proj",
|
||||
"up_blocks.2.resnets.1.conv1",
|
||||
"up_blocks.2.resnets.1.conv2",
|
||||
"up_blocks.2.resnets.1.conv_shortcut",
|
||||
"up_blocks.2.resnets.1.norm1",
|
||||
"up_blocks.2.resnets.1.norm2",
|
||||
"up_blocks.2.resnets.1.time_emb_proj",
|
||||
"up_blocks.2.resnets.2.conv1",
|
||||
"up_blocks.2.resnets.2.conv2",
|
||||
"up_blocks.2.resnets.2.conv_shortcut",
|
||||
"up_blocks.2.resnets.2.norm1",
|
||||
"up_blocks.2.resnets.2.norm2",
|
||||
"up_blocks.2.resnets.2.time_emb_proj",
|
||||
"up_blocks.2.upsamplers.0.conv",
|
||||
"up_blocks.3.attentions.0.norm",
|
||||
"up_blocks.3.attentions.0.proj_in",
|
||||
"up_blocks.3.attentions.0.proj_out",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.norm1",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.norm2",
|
||||
"up_blocks.3.attentions.0.transformer_blocks.0.norm3",
|
||||
"up_blocks.3.attentions.1.norm",
|
||||
"up_blocks.3.attentions.1.proj_in",
|
||||
"up_blocks.3.attentions.1.proj_out",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.norm1",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.norm2",
|
||||
"up_blocks.3.attentions.1.transformer_blocks.0.norm3",
|
||||
"up_blocks.3.attentions.2.norm",
|
||||
"up_blocks.3.attentions.2.proj_in",
|
||||
"up_blocks.3.attentions.2.proj_out",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_k",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_out.0",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_q",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_v",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_k",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_out.0",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_q",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.to_v",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.ff.net.0.proj",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.ff.net.2",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.norm1",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.norm2",
|
||||
"up_blocks.3.attentions.2.transformer_blocks.0.norm3",
|
||||
"up_blocks.3.resnets.0.conv1",
|
||||
"up_blocks.3.resnets.0.conv2",
|
||||
"up_blocks.3.resnets.0.conv_shortcut",
|
||||
"up_blocks.3.resnets.0.norm1",
|
||||
"up_blocks.3.resnets.0.norm2",
|
||||
"up_blocks.3.resnets.0.time_emb_proj",
|
||||
"up_blocks.3.resnets.1.conv1",
|
||||
"up_blocks.3.resnets.1.conv2",
|
||||
"up_blocks.3.resnets.1.conv_shortcut",
|
||||
"up_blocks.3.resnets.1.norm1",
|
||||
"up_blocks.3.resnets.1.norm2",
|
||||
"up_blocks.3.resnets.1.time_emb_proj",
|
||||
"up_blocks.3.resnets.2.conv1",
|
||||
"up_blocks.3.resnets.2.conv2",
|
||||
"up_blocks.3.resnets.2.conv_shortcut",
|
||||
"up_blocks.3.resnets.2.norm1",
|
||||
"up_blocks.3.resnets.2.norm2",
|
||||
"up_blocks.3.resnets.2.time_emb_proj"
|
||||
]
|
@ -0,0 +1,14 @@
|
||||
[
|
||||
"first_stage_model.(decoder|encoder).(conv_in|conv_out|norm_out)",
|
||||
"first_stage_model.(decoder|encoder).mid.(block_1|block_2).(conv1|conv2|norm1|norm2)",
|
||||
"first_stage_model.(decoder|encoder).mid.attn_1.(k|norm|proj_out|q|v)",
|
||||
"first_stage_model.(post_quant_conv|quant_conv)",
|
||||
"first_stage_model.decoder.up.(0|1).block.(1|2).(conv1|conv2|norm1|norm2)",
|
||||
"first_stage_model.decoder.up.(0|1).block.0.(conv1|conv2|nin_shortcut|norm1|norm2)",
|
||||
"first_stage_model.decoder.up.(1|2|3).upsample.conv",
|
||||
"first_stage_model.decoder.up.(2|3).block.(0|1|2).(conv1|conv2|norm1|norm2)",
|
||||
"first_stage_model.encoder.down.(0|1|2).downsample.conv",
|
||||
"first_stage_model.encoder.down.(0|3).block.(0|1).(conv1|conv2|norm1|norm2)",
|
||||
"first_stage_model.encoder.down.(1|2).block.0.(conv1|conv2|nin_shortcut|norm1|norm2)",
|
||||
"first_stage_model.encoder.down.(1|2).block.1.(conv1|conv2|norm1|norm2)"
|
||||
]
|
@ -0,0 +1,126 @@
|
||||
[
|
||||
"encoder.conv_in",
|
||||
"encoder.down.0.block.0.norm1",
|
||||
"encoder.down.0.block.0.conv1",
|
||||
"encoder.down.0.block.0.norm2",
|
||||
"encoder.down.0.block.0.conv2",
|
||||
"encoder.down.0.block.1.norm1",
|
||||
"encoder.down.0.block.1.conv1",
|
||||
"encoder.down.0.block.1.norm2",
|
||||
"encoder.down.0.block.1.conv2",
|
||||
"encoder.down.0.downsample.conv",
|
||||
"encoder.down.1.block.0.norm1",
|
||||
"encoder.down.1.block.0.conv1",
|
||||
"encoder.down.1.block.0.norm2",
|
||||
"encoder.down.1.block.0.conv2",
|
||||
"encoder.down.1.block.0.nin_shortcut",
|
||||
"encoder.down.1.block.1.norm1",
|
||||
"encoder.down.1.block.1.conv1",
|
||||
"encoder.down.1.block.1.norm2",
|
||||
"encoder.down.1.block.1.conv2",
|
||||
"encoder.down.1.downsample.conv",
|
||||
"encoder.down.2.block.0.norm1",
|
||||
"encoder.down.2.block.0.conv1",
|
||||
"encoder.down.2.block.0.norm2",
|
||||
"encoder.down.2.block.0.conv2",
|
||||
"encoder.down.2.block.0.nin_shortcut",
|
||||
"encoder.down.2.block.1.norm1",
|
||||
"encoder.down.2.block.1.conv1",
|
||||
"encoder.down.2.block.1.norm2",
|
||||
"encoder.down.2.block.1.conv2",
|
||||
"encoder.down.2.downsample.conv",
|
||||
"encoder.down.3.block.0.norm1",
|
||||
"encoder.down.3.block.0.conv1",
|
||||
"encoder.down.3.block.0.norm2",
|
||||
"encoder.down.3.block.0.conv2",
|
||||
"encoder.down.3.block.1.norm1",
|
||||
"encoder.down.3.block.1.conv1",
|
||||
"encoder.down.3.block.1.norm2",
|
||||
"encoder.down.3.block.1.conv2",
|
||||
"encoder.mid.block_1.norm1",
|
||||
"encoder.mid.block_1.conv1",
|
||||
"encoder.mid.block_1.norm2",
|
||||
"encoder.mid.block_1.conv2",
|
||||
"encoder.mid.attn_1.norm",
|
||||
"encoder.mid.attn_1.q",
|
||||
"encoder.mid.attn_1.k",
|
||||
"encoder.mid.attn_1.v",
|
||||
"encoder.mid.attn_1.proj_out",
|
||||
"encoder.mid.block_2.norm1",
|
||||
"encoder.mid.block_2.conv1",
|
||||
"encoder.mid.block_2.norm2",
|
||||
"encoder.mid.block_2.conv2",
|
||||
"encoder.norm_out",
|
||||
"encoder.conv_out",
|
||||
"quant_conv",
|
||||
"post_quant_conv",
|
||||
"decoder.conv_in",
|
||||
"decoder.mid.block_1.norm1",
|
||||
"decoder.mid.block_1.conv1",
|
||||
"decoder.mid.block_1.norm2",
|
||||
"decoder.mid.block_1.conv2",
|
||||
"decoder.mid.attn_1.norm",
|
||||
"decoder.mid.attn_1.q",
|
||||
"decoder.mid.attn_1.k",
|
||||
"decoder.mid.attn_1.v",
|
||||
"decoder.mid.attn_1.proj_out",
|
||||
"decoder.mid.block_2.norm1",
|
||||
"decoder.mid.block_2.conv1",
|
||||
"decoder.mid.block_2.norm2",
|
||||
"decoder.mid.block_2.conv2",
|
||||
"decoder.up.3.block.0.norm1",
|
||||
"decoder.up.3.block.0.conv1",
|
||||
"decoder.up.3.block.0.norm2",
|
||||
"decoder.up.3.block.0.conv2",
|
||||
"decoder.up.3.block.1.norm1",
|
||||
"decoder.up.3.block.1.conv1",
|
||||
"decoder.up.3.block.1.norm2",
|
||||
"decoder.up.3.block.1.conv2",
|
||||
"decoder.up.3.block.2.norm1",
|
||||
"decoder.up.3.block.2.conv1",
|
||||
"decoder.up.3.block.2.norm2",
|
||||
"decoder.up.3.block.2.conv2",
|
||||
"decoder.up.3.upsample.conv",
|
||||
"decoder.up.2.block.0.norm1",
|
||||
"decoder.up.2.block.0.conv1",
|
||||
"decoder.up.2.block.0.norm2",
|
||||
"decoder.up.2.block.0.conv2",
|
||||
"decoder.up.2.block.1.norm1",
|
||||
"decoder.up.2.block.1.conv1",
|
||||
"decoder.up.2.block.1.norm2",
|
||||
"decoder.up.2.block.1.conv2",
|
||||
"decoder.up.2.block.2.norm1",
|
||||
"decoder.up.2.block.2.conv1",
|
||||
"decoder.up.2.block.2.norm2",
|
||||
"decoder.up.2.block.2.conv2",
|
||||
"decoder.up.2.upsample.conv",
|
||||
"decoder.up.1.block.0.norm1",
|
||||
"decoder.up.1.block.0.conv1",
|
||||
"decoder.up.1.block.0.norm2",
|
||||
"decoder.up.1.block.0.conv2",
|
||||
"decoder.up.1.block.0.nin_shortcut",
|
||||
"decoder.up.1.block.1.norm1",
|
||||
"decoder.up.1.block.1.conv1",
|
||||
"decoder.up.1.block.1.norm2",
|
||||
"decoder.up.1.block.1.conv2",
|
||||
"decoder.up.1.block.2.norm1",
|
||||
"decoder.up.1.block.2.conv1",
|
||||
"decoder.up.1.block.2.norm2",
|
||||
"decoder.up.1.block.2.conv2",
|
||||
"decoder.up.1.upsample.conv",
|
||||
"decoder.up.0.block.0.norm1",
|
||||
"decoder.up.0.block.0.conv1",
|
||||
"decoder.up.0.block.0.norm2",
|
||||
"decoder.up.0.block.0.conv2",
|
||||
"decoder.up.0.block.0.nin_shortcut",
|
||||
"decoder.up.0.block.1.norm1",
|
||||
"decoder.up.0.block.1.conv1",
|
||||
"decoder.up.0.block.1.norm2",
|
||||
"decoder.up.0.block.1.conv2",
|
||||
"decoder.up.0.block.2.norm1",
|
||||
"decoder.up.0.block.2.conv1",
|
||||
"decoder.up.0.block.2.norm2",
|
||||
"decoder.up.0.block.2.conv2",
|
||||
"decoder.norm_out",
|
||||
"decoder.conv_out"
|
||||
]
|
@ -0,0 +1,126 @@
|
||||
[
|
||||
"first_stage_model.decoder.conv_in",
|
||||
"first_stage_model.decoder.conv_out",
|
||||
"first_stage_model.decoder.mid.attn_1.k",
|
||||
"first_stage_model.decoder.mid.attn_1.norm",
|
||||
"first_stage_model.decoder.mid.attn_1.proj_out",
|
||||
"first_stage_model.decoder.mid.attn_1.q",
|
||||
"first_stage_model.decoder.mid.attn_1.v",
|
||||
"first_stage_model.decoder.mid.block_1.conv1",
|
||||
"first_stage_model.decoder.mid.block_1.conv2",
|
||||
"first_stage_model.decoder.mid.block_1.norm1",
|
||||
"first_stage_model.decoder.mid.block_1.norm2",
|
||||
"first_stage_model.decoder.mid.block_2.conv1",
|
||||
"first_stage_model.decoder.mid.block_2.conv2",
|
||||
"first_stage_model.decoder.mid.block_2.norm1",
|
||||
"first_stage_model.decoder.mid.block_2.norm2",
|
||||
"first_stage_model.decoder.norm_out",
|
||||
"first_stage_model.decoder.up.0.block.0.conv1",
|
||||
"first_stage_model.decoder.up.0.block.0.conv2",
|
||||
"first_stage_model.decoder.up.0.block.0.nin_shortcut",
|
||||
"first_stage_model.decoder.up.0.block.0.norm1",
|
||||
"first_stage_model.decoder.up.0.block.0.norm2",
|
||||
"first_stage_model.decoder.up.0.block.1.conv1",
|
||||
"first_stage_model.decoder.up.0.block.1.conv2",
|
||||
"first_stage_model.decoder.up.0.block.1.norm1",
|
||||
"first_stage_model.decoder.up.0.block.1.norm2",
|
||||
"first_stage_model.decoder.up.0.block.2.conv1",
|
||||
"first_stage_model.decoder.up.0.block.2.conv2",
|
||||
"first_stage_model.decoder.up.0.block.2.norm1",
|
||||
"first_stage_model.decoder.up.0.block.2.norm2",
|
||||
"first_stage_model.decoder.up.1.block.0.conv1",
|
||||
"first_stage_model.decoder.up.1.block.0.conv2",
|
||||
"first_stage_model.decoder.up.1.block.0.nin_shortcut",
|
||||
"first_stage_model.decoder.up.1.block.0.norm1",
|
||||
"first_stage_model.decoder.up.1.block.0.norm2",
|
||||
"first_stage_model.decoder.up.1.block.1.conv1",
|
||||
"first_stage_model.decoder.up.1.block.1.conv2",
|
||||
"first_stage_model.decoder.up.1.block.1.norm1",
|
||||
"first_stage_model.decoder.up.1.block.1.norm2",
|
||||
"first_stage_model.decoder.up.1.block.2.conv1",
|
||||
"first_stage_model.decoder.up.1.block.2.conv2",
|
||||
"first_stage_model.decoder.up.1.block.2.norm1",
|
||||
"first_stage_model.decoder.up.1.block.2.norm2",
|
||||
"first_stage_model.decoder.up.1.upsample.conv",
|
||||
"first_stage_model.decoder.up.2.block.0.conv1",
|
||||
"first_stage_model.decoder.up.2.block.0.conv2",
|
||||
"first_stage_model.decoder.up.2.block.0.norm1",
|
||||
"first_stage_model.decoder.up.2.block.0.norm2",
|
||||
"first_stage_model.decoder.up.2.block.1.conv1",
|
||||
"first_stage_model.decoder.up.2.block.1.conv2",
|
||||
"first_stage_model.decoder.up.2.block.1.norm1",
|
||||
"first_stage_model.decoder.up.2.block.1.norm2",
|
||||
"first_stage_model.decoder.up.2.block.2.conv1",
|
||||
"first_stage_model.decoder.up.2.block.2.conv2",
|
||||
"first_stage_model.decoder.up.2.block.2.norm1",
|
||||
"first_stage_model.decoder.up.2.block.2.norm2",
|
||||
"first_stage_model.decoder.up.2.upsample.conv",
|
||||
"first_stage_model.decoder.up.3.block.0.conv1",
|
||||
"first_stage_model.decoder.up.3.block.0.conv2",
|
||||
"first_stage_model.decoder.up.3.block.0.norm1",
|
||||
"first_stage_model.decoder.up.3.block.0.norm2",
|
||||
"first_stage_model.decoder.up.3.block.1.conv1",
|
||||
"first_stage_model.decoder.up.3.block.1.conv2",
|
||||
"first_stage_model.decoder.up.3.block.1.norm1",
|
||||
"first_stage_model.decoder.up.3.block.1.norm2",
|
||||
"first_stage_model.decoder.up.3.block.2.conv1",
|
||||
"first_stage_model.decoder.up.3.block.2.conv2",
|
||||
"first_stage_model.decoder.up.3.block.2.norm1",
|
||||
"first_stage_model.decoder.up.3.block.2.norm2",
|
||||
"first_stage_model.decoder.up.3.upsample.conv",
|
||||
"first_stage_model.encoder.conv_in",
|
||||
"first_stage_model.encoder.conv_out",
|
||||
"first_stage_model.encoder.down.0.block.0.conv1",
|
||||
"first_stage_model.encoder.down.0.block.0.conv2",
|
||||
"first_stage_model.encoder.down.0.block.0.norm1",
|
||||
"first_stage_model.encoder.down.0.block.0.norm2",
|
||||
"first_stage_model.encoder.down.0.block.1.conv1",
|
||||
"first_stage_model.encoder.down.0.block.1.conv2",
|
||||
"first_stage_model.encoder.down.0.block.1.norm1",
|
||||
"first_stage_model.encoder.down.0.block.1.norm2",
|
||||
"first_stage_model.encoder.down.0.downsample.conv",
|
||||
"first_stage_model.encoder.down.1.block.0.conv1",
|
||||
"first_stage_model.encoder.down.1.block.0.conv2",
|
||||
"first_stage_model.encoder.down.1.block.0.nin_shortcut",
|
||||
"first_stage_model.encoder.down.1.block.0.norm1",
|
||||
"first_stage_model.encoder.down.1.block.0.norm2",
|
||||
"first_stage_model.encoder.down.1.block.1.conv1",
|
||||
"first_stage_model.encoder.down.1.block.1.conv2",
|
||||
"first_stage_model.encoder.down.1.block.1.norm1",
|
||||
"first_stage_model.encoder.down.1.block.1.norm2",
|
||||
"first_stage_model.encoder.down.1.downsample.conv",
|
||||
"first_stage_model.encoder.down.2.block.0.conv1",
|
||||
"first_stage_model.encoder.down.2.block.0.conv2",
|
||||
"first_stage_model.encoder.down.2.block.0.nin_shortcut",
|
||||
"first_stage_model.encoder.down.2.block.0.norm1",
|
||||
"first_stage_model.encoder.down.2.block.0.norm2",
|
||||
"first_stage_model.encoder.down.2.block.1.conv1",
|
||||
"first_stage_model.encoder.down.2.block.1.conv2",
|
||||
"first_stage_model.encoder.down.2.block.1.norm1",
|
||||
"first_stage_model.encoder.down.2.block.1.norm2",
|
||||
"first_stage_model.encoder.down.2.downsample.conv",
|
||||
"first_stage_model.encoder.down.3.block.0.conv1",
|
||||
"first_stage_model.encoder.down.3.block.0.conv2",
|
||||
"first_stage_model.encoder.down.3.block.0.norm1",
|
||||
"first_stage_model.encoder.down.3.block.0.norm2",
|
||||
"first_stage_model.encoder.down.3.block.1.conv1",
|
||||
"first_stage_model.encoder.down.3.block.1.conv2",
|
||||
"first_stage_model.encoder.down.3.block.1.norm1",
|
||||
"first_stage_model.encoder.down.3.block.1.norm2",
|
||||
"first_stage_model.encoder.mid.attn_1.k",
|
||||
"first_stage_model.encoder.mid.attn_1.norm",
|
||||
"first_stage_model.encoder.mid.attn_1.proj_out",
|
||||
"first_stage_model.encoder.mid.attn_1.q",
|
||||
"first_stage_model.encoder.mid.attn_1.v",
|
||||
"first_stage_model.encoder.mid.block_1.conv1",
|
||||
"first_stage_model.encoder.mid.block_1.conv2",
|
||||
"first_stage_model.encoder.mid.block_1.norm1",
|
||||
"first_stage_model.encoder.mid.block_1.norm2",
|
||||
"first_stage_model.encoder.mid.block_2.conv1",
|
||||
"first_stage_model.encoder.mid.block_2.conv2",
|
||||
"first_stage_model.encoder.mid.block_2.norm1",
|
||||
"first_stage_model.encoder.mid.block_2.norm2",
|
||||
"first_stage_model.encoder.norm_out",
|
||||
"first_stage_model.post_quant_conv",
|
||||
"first_stage_model.quant_conv"
|
||||
]
|
@ -0,0 +1,15 @@
|
||||
[
|
||||
"(decoder|encoder).(conv_in|conv_norm_out|conv_out)",
|
||||
"(decoder|encoder).mid_block.attentions.0.(group_norm|to_k|to_q|to_v)",
|
||||
"(decoder|encoder).mid_block.attentions.0.to_out.0",
|
||||
"(decoder|encoder).mid_block.resnets.(0|1).(conv1|conv2|norm1|norm2)",
|
||||
"(post_quant_conv|quant_conv)",
|
||||
"decoder.up_blocks.(0|1).resnets.(0|1|2).(conv1|conv2|norm1|norm2)",
|
||||
"decoder.up_blocks.(0|1|2).upsamplers.0.conv",
|
||||
"decoder.up_blocks.(2|3).resnets.(1|2).(conv1|conv2|norm1|norm2)",
|
||||
"decoder.up_blocks.(2|3).resnets.0.(conv1|conv2|conv_shortcut|norm1|norm2)",
|
||||
"encoder.down_blocks.(0|1|2).downsamplers.0.conv",
|
||||
"encoder.down_blocks.(0|3).resnets.(0|1).(conv1|conv2|norm1|norm2)",
|
||||
"encoder.down_blocks.(1|2).resnets.0.(conv1|conv2|conv_shortcut|norm1|norm2)",
|
||||
"encoder.down_blocks.(1|2).resnets.1.(conv1|conv2|norm1|norm2)"
|
||||
]
|
@ -0,0 +1,126 @@
|
||||
[
|
||||
"encoder.conv_in",
|
||||
"encoder.down_blocks.0.resnets.0.norm1",
|
||||
"encoder.down_blocks.0.resnets.0.conv1",
|
||||
"encoder.down_blocks.0.resnets.0.norm2",
|
||||
"encoder.down_blocks.0.resnets.0.conv2",
|
||||
"encoder.down_blocks.0.resnets.1.norm1",
|
||||
"encoder.down_blocks.0.resnets.1.conv1",
|
||||
"encoder.down_blocks.0.resnets.1.norm2",
|
||||
"encoder.down_blocks.0.resnets.1.conv2",
|
||||
"encoder.down_blocks.0.downsamplers.0.conv",
|
||||
"encoder.down_blocks.1.resnets.0.norm1",
|
||||
"encoder.down_blocks.1.resnets.0.conv1",
|
||||
"encoder.down_blocks.1.resnets.0.norm2",
|
||||
"encoder.down_blocks.1.resnets.0.conv2",
|
||||
"encoder.down_blocks.1.resnets.0.conv_shortcut",
|
||||
"encoder.down_blocks.1.resnets.1.norm1",
|
||||
"encoder.down_blocks.1.resnets.1.conv1",
|
||||
"encoder.down_blocks.1.resnets.1.norm2",
|
||||
"encoder.down_blocks.1.resnets.1.conv2",
|
||||
"encoder.down_blocks.1.downsamplers.0.conv",
|
||||
"encoder.down_blocks.2.resnets.0.norm1",
|
||||
"encoder.down_blocks.2.resnets.0.conv1",
|
||||
"encoder.down_blocks.2.resnets.0.norm2",
|
||||
"encoder.down_blocks.2.resnets.0.conv2",
|
||||
"encoder.down_blocks.2.resnets.0.conv_shortcut",
|
||||
"encoder.down_blocks.2.resnets.1.norm1",
|
||||
"encoder.down_blocks.2.resnets.1.conv1",
|
||||
"encoder.down_blocks.2.resnets.1.norm2",
|
||||
"encoder.down_blocks.2.resnets.1.conv2",
|
||||
"encoder.down_blocks.2.downsamplers.0.conv",
|
||||
"encoder.down_blocks.3.resnets.0.norm1",
|
||||
"encoder.down_blocks.3.resnets.0.conv1",
|
||||
"encoder.down_blocks.3.resnets.0.norm2",
|
||||
"encoder.down_blocks.3.resnets.0.conv2",
|
||||
"encoder.down_blocks.3.resnets.1.norm1",
|
||||
"encoder.down_blocks.3.resnets.1.conv1",
|
||||
"encoder.down_blocks.3.resnets.1.norm2",
|
||||
"encoder.down_blocks.3.resnets.1.conv2",
|
||||
"encoder.mid_block.resnets.0.norm1",
|
||||
"encoder.mid_block.resnets.0.conv1",
|
||||
"encoder.mid_block.resnets.0.norm2",
|
||||
"encoder.mid_block.resnets.0.conv2",
|
||||
"encoder.mid_block.attentions.0.group_norm",
|
||||
"encoder.mid_block.attentions.0.to_q",
|
||||
"encoder.mid_block.attentions.0.to_k",
|
||||
"encoder.mid_block.attentions.0.to_v",
|
||||
"encoder.mid_block.attentions.0.to_out.0",
|
||||
"encoder.mid_block.resnets.1.norm1",
|
||||
"encoder.mid_block.resnets.1.conv1",
|
||||
"encoder.mid_block.resnets.1.norm2",
|
||||
"encoder.mid_block.resnets.1.conv2",
|
||||
"encoder.conv_norm_out",
|
||||
"encoder.conv_out",
|
||||
"quant_conv",
|
||||
"post_quant_conv",
|
||||
"decoder.conv_in",
|
||||
"decoder.mid_block.resnets.0.norm1",
|
||||
"decoder.mid_block.resnets.0.conv1",
|
||||
"decoder.mid_block.resnets.0.norm2",
|
||||
"decoder.mid_block.resnets.0.conv2",
|
||||
"decoder.mid_block.attentions.0.group_norm",
|
||||
"decoder.mid_block.attentions.0.to_q",
|
||||
"decoder.mid_block.attentions.0.to_k",
|
||||
"decoder.mid_block.attentions.0.to_v",
|
||||
"decoder.mid_block.attentions.0.to_out.0",
|
||||
"decoder.mid_block.resnets.1.norm1",
|
||||
"decoder.mid_block.resnets.1.conv1",
|
||||
"decoder.mid_block.resnets.1.norm2",
|
||||
"decoder.mid_block.resnets.1.conv2",
|
||||
"decoder.up_blocks.0.resnets.0.norm1",
|
||||
"decoder.up_blocks.0.resnets.0.conv1",
|
||||
"decoder.up_blocks.0.resnets.0.norm2",
|
||||
"decoder.up_blocks.0.resnets.0.conv2",
|
||||
"decoder.up_blocks.0.resnets.1.norm1",
|
||||
"decoder.up_blocks.0.resnets.1.conv1",
|
||||
"decoder.up_blocks.0.resnets.1.norm2",
|
||||
"decoder.up_blocks.0.resnets.1.conv2",
|
||||
"decoder.up_blocks.0.resnets.2.norm1",
|
||||
"decoder.up_blocks.0.resnets.2.conv1",
|
||||
"decoder.up_blocks.0.resnets.2.norm2",
|
||||
"decoder.up_blocks.0.resnets.2.conv2",
|
||||
"decoder.up_blocks.0.upsamplers.0.conv",
|
||||
"decoder.up_blocks.1.resnets.0.norm1",
|
||||
"decoder.up_blocks.1.resnets.0.conv1",
|
||||
"decoder.up_blocks.1.resnets.0.norm2",
|
||||
"decoder.up_blocks.1.resnets.0.conv2",
|
||||
"decoder.up_blocks.1.resnets.1.norm1",
|
||||
"decoder.up_blocks.1.resnets.1.conv1",
|
||||
"decoder.up_blocks.1.resnets.1.norm2",
|
||||
"decoder.up_blocks.1.resnets.1.conv2",
|
||||
"decoder.up_blocks.1.resnets.2.norm1",
|
||||
"decoder.up_blocks.1.resnets.2.conv1",
|
||||
"decoder.up_blocks.1.resnets.2.norm2",
|
||||
"decoder.up_blocks.1.resnets.2.conv2",
|
||||
"decoder.up_blocks.1.upsamplers.0.conv",
|
||||
"decoder.up_blocks.2.resnets.0.norm1",
|
||||
"decoder.up_blocks.2.resnets.0.conv1",
|
||||
"decoder.up_blocks.2.resnets.0.norm2",
|
||||
"decoder.up_blocks.2.resnets.0.conv2",
|
||||
"decoder.up_blocks.2.resnets.0.conv_shortcut",
|
||||
"decoder.up_blocks.2.resnets.1.norm1",
|
||||
"decoder.up_blocks.2.resnets.1.conv1",
|
||||
"decoder.up_blocks.2.resnets.1.norm2",
|
||||
"decoder.up_blocks.2.resnets.1.conv2",
|
||||
"decoder.up_blocks.2.resnets.2.norm1",
|
||||
"decoder.up_blocks.2.resnets.2.conv1",
|
||||
"decoder.up_blocks.2.resnets.2.norm2",
|
||||
"decoder.up_blocks.2.resnets.2.conv2",
|
||||
"decoder.up_blocks.2.upsamplers.0.conv",
|
||||
"decoder.up_blocks.3.resnets.0.norm1",
|
||||
"decoder.up_blocks.3.resnets.0.conv1",
|
||||
"decoder.up_blocks.3.resnets.0.norm2",
|
||||
"decoder.up_blocks.3.resnets.0.conv2",
|
||||
"decoder.up_blocks.3.resnets.0.conv_shortcut",
|
||||
"decoder.up_blocks.3.resnets.1.norm1",
|
||||
"decoder.up_blocks.3.resnets.1.conv1",
|
||||
"decoder.up_blocks.3.resnets.1.norm2",
|
||||
"decoder.up_blocks.3.resnets.1.conv2",
|
||||
"decoder.up_blocks.3.resnets.2.norm1",
|
||||
"decoder.up_blocks.3.resnets.2.conv1",
|
||||
"decoder.up_blocks.3.resnets.2.norm2",
|
||||
"decoder.up_blocks.3.resnets.2.conv2",
|
||||
"decoder.conv_norm_out",
|
||||
"decoder.conv_out"
|
||||
]
|
@ -0,0 +1,126 @@
|
||||
[
|
||||
"decoder.conv_in",
|
||||
"decoder.conv_norm_out",
|
||||
"decoder.conv_out",
|
||||
"decoder.mid_block.attentions.0.group_norm",
|
||||
"decoder.mid_block.attentions.0.to_k",
|
||||
"decoder.mid_block.attentions.0.to_out.0",
|
||||
"decoder.mid_block.attentions.0.to_q",
|
||||
"decoder.mid_block.attentions.0.to_v",
|
||||
"decoder.mid_block.resnets.0.conv1",
|
||||
"decoder.mid_block.resnets.0.conv2",
|
||||
"decoder.mid_block.resnets.0.norm1",
|
||||
"decoder.mid_block.resnets.0.norm2",
|
||||
"decoder.mid_block.resnets.1.conv1",
|
||||
"decoder.mid_block.resnets.1.conv2",
|
||||
"decoder.mid_block.resnets.1.norm1",
|
||||
"decoder.mid_block.resnets.1.norm2",
|
||||
"decoder.up_blocks.0.resnets.0.conv1",
|
||||
"decoder.up_blocks.0.resnets.0.conv2",
|
||||
"decoder.up_blocks.0.resnets.0.norm1",
|
||||
"decoder.up_blocks.0.resnets.0.norm2",
|
||||
"decoder.up_blocks.0.resnets.1.conv1",
|
||||
"decoder.up_blocks.0.resnets.1.conv2",
|
||||
"decoder.up_blocks.0.resnets.1.norm1",
|
||||
"decoder.up_blocks.0.resnets.1.norm2",
|
||||
"decoder.up_blocks.0.resnets.2.conv1",
|
||||
"decoder.up_blocks.0.resnets.2.conv2",
|
||||
"decoder.up_blocks.0.resnets.2.norm1",
|
||||
"decoder.up_blocks.0.resnets.2.norm2",
|
||||
"decoder.up_blocks.0.upsamplers.0.conv",
|
||||
"decoder.up_blocks.1.resnets.0.conv1",
|
||||
"decoder.up_blocks.1.resnets.0.conv2",
|
||||
"decoder.up_blocks.1.resnets.0.norm1",
|
||||
"decoder.up_blocks.1.resnets.0.norm2",
|
||||
"decoder.up_blocks.1.resnets.1.conv1",
|
||||
"decoder.up_blocks.1.resnets.1.conv2",
|
||||
"decoder.up_blocks.1.resnets.1.norm1",
|
||||
"decoder.up_blocks.1.resnets.1.norm2",
|
||||
"decoder.up_blocks.1.resnets.2.conv1",
|
||||
"decoder.up_blocks.1.resnets.2.conv2",
|
||||
"decoder.up_blocks.1.resnets.2.norm1",
|
||||
"decoder.up_blocks.1.resnets.2.norm2",
|
||||
"decoder.up_blocks.1.upsamplers.0.conv",
|
||||
"decoder.up_blocks.2.resnets.0.conv1",
|
||||
"decoder.up_blocks.2.resnets.0.conv2",
|
||||
"decoder.up_blocks.2.resnets.0.conv_shortcut",
|
||||
"decoder.up_blocks.2.resnets.0.norm1",
|
||||
"decoder.up_blocks.2.resnets.0.norm2",
|
||||
"decoder.up_blocks.2.resnets.1.conv1",
|
||||
"decoder.up_blocks.2.resnets.1.conv2",
|
||||
"decoder.up_blocks.2.resnets.1.norm1",
|
||||
"decoder.up_blocks.2.resnets.1.norm2",
|
||||
"decoder.up_blocks.2.resnets.2.conv1",
|
||||
"decoder.up_blocks.2.resnets.2.conv2",
|
||||
"decoder.up_blocks.2.resnets.2.norm1",
|
||||
"decoder.up_blocks.2.resnets.2.norm2",
|
||||
"decoder.up_blocks.2.upsamplers.0.conv",
|
||||
"decoder.up_blocks.3.resnets.0.conv1",
|
||||
"decoder.up_blocks.3.resnets.0.conv2",
|
||||
"decoder.up_blocks.3.resnets.0.conv_shortcut",
|
||||
"decoder.up_blocks.3.resnets.0.norm1",
|
||||
"decoder.up_blocks.3.resnets.0.norm2",
|
||||
"decoder.up_blocks.3.resnets.1.conv1",
|
||||
"decoder.up_blocks.3.resnets.1.conv2",
|
||||
"decoder.up_blocks.3.resnets.1.norm1",
|
||||
"decoder.up_blocks.3.resnets.1.norm2",
|
||||
"decoder.up_blocks.3.resnets.2.conv1",
|
||||
"decoder.up_blocks.3.resnets.2.conv2",
|
||||
"decoder.up_blocks.3.resnets.2.norm1",
|
||||
"decoder.up_blocks.3.resnets.2.norm2",
|
||||
"encoder.conv_in",
|
||||
"encoder.conv_norm_out",
|
||||
"encoder.conv_out",
|
||||
"encoder.down_blocks.0.downsamplers.0.conv",
|
||||
"encoder.down_blocks.0.resnets.0.conv1",
|
||||
"encoder.down_blocks.0.resnets.0.conv2",
|
||||
"encoder.down_blocks.0.resnets.0.norm1",
|
||||
"encoder.down_blocks.0.resnets.0.norm2",
|
||||
"encoder.down_blocks.0.resnets.1.conv1",
|
||||
"encoder.down_blocks.0.resnets.1.conv2",
|
||||
"encoder.down_blocks.0.resnets.1.norm1",
|
||||
"encoder.down_blocks.0.resnets.1.norm2",
|
||||
"encoder.down_blocks.1.downsamplers.0.conv",
|
||||
"encoder.down_blocks.1.resnets.0.conv1",
|
||||
"encoder.down_blocks.1.resnets.0.conv2",
|
||||
"encoder.down_blocks.1.resnets.0.conv_shortcut",
|
||||
"encoder.down_blocks.1.resnets.0.norm1",
|
||||
"encoder.down_blocks.1.resnets.0.norm2",
|
||||
"encoder.down_blocks.1.resnets.1.conv1",
|
||||
"encoder.down_blocks.1.resnets.1.conv2",
|
||||
"encoder.down_blocks.1.resnets.1.norm1",
|
||||
"encoder.down_blocks.1.resnets.1.norm2",
|
||||
"encoder.down_blocks.2.downsamplers.0.conv",
|
||||
"encoder.down_blocks.2.resnets.0.conv1",
|
||||
"encoder.down_blocks.2.resnets.0.conv2",
|
||||
"encoder.down_blocks.2.resnets.0.conv_shortcut",
|
||||
"encoder.down_blocks.2.resnets.0.norm1",
|
||||
"encoder.down_blocks.2.resnets.0.norm2",
|
||||
"encoder.down_blocks.2.resnets.1.conv1",
|
||||
"encoder.down_blocks.2.resnets.1.conv2",
|
||||
"encoder.down_blocks.2.resnets.1.norm1",
|
||||
"encoder.down_blocks.2.resnets.1.norm2",
|
||||
"encoder.down_blocks.3.resnets.0.conv1",
|
||||
"encoder.down_blocks.3.resnets.0.conv2",
|
||||
"encoder.down_blocks.3.resnets.0.norm1",
|
||||
"encoder.down_blocks.3.resnets.0.norm2",
|
||||
"encoder.down_blocks.3.resnets.1.conv1",
|
||||
"encoder.down_blocks.3.resnets.1.conv2",
|
||||
"encoder.down_blocks.3.resnets.1.norm1",
|
||||
"encoder.down_blocks.3.resnets.1.norm2",
|
||||
"encoder.mid_block.attentions.0.group_norm",
|
||||
"encoder.mid_block.attentions.0.to_k",
|
||||
"encoder.mid_block.attentions.0.to_out.0",
|
||||
"encoder.mid_block.attentions.0.to_q",
|
||||
"encoder.mid_block.attentions.0.to_v",
|
||||
"encoder.mid_block.resnets.0.conv1",
|
||||
"encoder.mid_block.resnets.0.conv2",
|
||||
"encoder.mid_block.resnets.0.norm1",
|
||||
"encoder.mid_block.resnets.0.norm2",
|
||||
"encoder.mid_block.resnets.1.conv1",
|
||||
"encoder.mid_block.resnets.1.conv2",
|
||||
"encoder.mid_block.resnets.1.norm1",
|
||||
"encoder.mid_block.resnets.1.norm2",
|
||||
"post_quant_conv",
|
||||
"quant_conv"
|
||||
]
|
@ -1,13 +1,14 @@
|
||||
#
|
||||
# This file is autogenerated by pip-compile with Python 3.10
|
||||
# by the following command:
|
||||
#
|
||||
# pip-compile --output-file=requirements-dev.txt requirements-dev.in setup.py
|
||||
#
|
||||
aiohttp==3.8.5
|
||||
aiohttp==3.9.0
|
||||
# via fsspec
|
||||
aiosignal==1.3.1
|
||||
# via aiohttp
|
||||
annotated-types==0.5.0
|
||||
annotated-types==0.6.0
|
||||
# via pydantic
|
||||
antlr4-python3-runtime==4.9.3
|
||||
# via omegaconf
|
||||
@ -19,14 +20,12 @@ async-timeout==4.0.3
|
||||
# via aiohttp
|
||||
attrs==23.1.0
|
||||
# via aiohttp
|
||||
black==23.9.1
|
||||
black==23.11.0
|
||||
# via -r requirements-dev.in
|
||||
certifi==2023.7.22
|
||||
certifi==2023.11.17
|
||||
# via requests
|
||||
charset-normalizer==3.3.2
|
||||
# via requests
|
||||
charset-normalizer==3.2.0
|
||||
# via
|
||||
# aiohttp
|
||||
# requests
|
||||
click==8.1.7
|
||||
# via
|
||||
# black
|
||||
@ -34,21 +33,21 @@ click==8.1.7
|
||||
# click-shell
|
||||
# imaginAIry (setup.py)
|
||||
# uvicorn
|
||||
click-help-colors==0.9.2
|
||||
click-help-colors==0.9.4
|
||||
# via imaginAIry (setup.py)
|
||||
click-shell==2.1
|
||||
# via imaginAIry (setup.py)
|
||||
contourpy==1.1.1
|
||||
contourpy==1.2.0
|
||||
# via matplotlib
|
||||
coverage==7.3.1
|
||||
coverage==7.3.2
|
||||
# via -r requirements-dev.in
|
||||
cycler==0.12.0
|
||||
cycler==0.12.1
|
||||
# via matplotlib
|
||||
diffusers==0.21.4
|
||||
diffusers==0.23.1
|
||||
# via imaginAIry (setup.py)
|
||||
einops==0.6.1
|
||||
einops==0.7.0
|
||||
# via imaginAIry (setup.py)
|
||||
exceptiongroup==1.1.3
|
||||
exceptiongroup==1.2.0
|
||||
# via
|
||||
# anyio
|
||||
# pytest
|
||||
@ -56,69 +55,82 @@ facexlib==0.3.0
|
||||
# via imaginAIry (setup.py)
|
||||
fairscale==0.4.13
|
||||
# via imaginAIry (setup.py)
|
||||
fastapi==0.103.2
|
||||
fastapi==0.104.1
|
||||
# via imaginAIry (setup.py)
|
||||
filelock==3.12.4
|
||||
filelock==3.13.1
|
||||
# via
|
||||
# diffusers
|
||||
# huggingface-hub
|
||||
# torch
|
||||
# transformers
|
||||
filterpy==1.4.5
|
||||
# via facexlib
|
||||
fonttools==4.43.0
|
||||
fonttools==4.45.0
|
||||
# via matplotlib
|
||||
frozenlist==1.4.0
|
||||
# via
|
||||
# aiohttp
|
||||
# aiosignal
|
||||
fsspec[http]==2023.9.2
|
||||
fsspec[http]==2023.10.0
|
||||
# via
|
||||
# huggingface-hub
|
||||
# pytorch-lightning
|
||||
ftfy==6.1.1
|
||||
# torch
|
||||
ftfy==6.1.3
|
||||
# via
|
||||
# imaginAIry (setup.py)
|
||||
# open-clip-torch
|
||||
h11==0.14.0
|
||||
# via uvicorn
|
||||
huggingface-hub==0.17.3
|
||||
huggingface-hub==0.19.4
|
||||
# via
|
||||
# diffusers
|
||||
# open-clip-torch
|
||||
# timm
|
||||
# tokenizers
|
||||
# transformers
|
||||
idna==3.4
|
||||
# via
|
||||
# anyio
|
||||
# requests
|
||||
# yarl
|
||||
imageio==2.31.4
|
||||
imageio==2.33.0
|
||||
# via imaginAIry (setup.py)
|
||||
importlib-metadata==6.8.0
|
||||
# via diffusers
|
||||
iniconfig==2.0.0
|
||||
# via pytest
|
||||
jaxtyping==0.2.23
|
||||
# via refiners
|
||||
jinja2==3.1.2
|
||||
# via torch
|
||||
kiwisolver==1.4.5
|
||||
# via matplotlib
|
||||
kornia==0.7.0
|
||||
# via imaginAIry (setup.py)
|
||||
lightning-utilities==0.9.0
|
||||
lightning-utilities==0.10.0
|
||||
# via
|
||||
# pytorch-lightning
|
||||
# torchmetrics
|
||||
llvmlite==0.41.0
|
||||
llvmlite==0.41.1
|
||||
# via numba
|
||||
matplotlib==3.7.3
|
||||
markupsafe==2.1.3
|
||||
# via jinja2
|
||||
matplotlib==3.7.4
|
||||
# via
|
||||
# -c tests/constraints.txt
|
||||
# filterpy
|
||||
mpmath==1.3.0
|
||||
# via sympy
|
||||
multidict==6.0.4
|
||||
# via
|
||||
# aiohttp
|
||||
# yarl
|
||||
mypy-extensions==1.0.0
|
||||
# via black
|
||||
numba==0.58.0
|
||||
networkx==3.2.1
|
||||
# via torch
|
||||
numba==0.58.1
|
||||
# via facexlib
|
||||
numpy==1.24.4
|
||||
# via
|
||||
@ -130,23 +142,25 @@ numpy==1.24.4
|
||||
# filterpy
|
||||
# imageio
|
||||
# imaginAIry (setup.py)
|
||||
# jaxtyping
|
||||
# matplotlib
|
||||
# numba
|
||||
# opencv-python
|
||||
# pytorch-lightning
|
||||
# refiners
|
||||
# scipy
|
||||
# torchmetrics
|
||||
# torchvision
|
||||
# transformers
|
||||
omegaconf==2.3.0
|
||||
# via imaginAIry (setup.py)
|
||||
open-clip-torch==2.20.0
|
||||
open-clip-torch==2.23.0
|
||||
# via imaginAIry (setup.py)
|
||||
opencv-python==4.8.1.78
|
||||
# via
|
||||
# facexlib
|
||||
# imaginAIry (setup.py)
|
||||
packaging==23.1
|
||||
packaging==23.2
|
||||
# via
|
||||
# black
|
||||
# huggingface-hub
|
||||
@ -159,33 +173,34 @@ packaging==23.1
|
||||
# transformers
|
||||
pathspec==0.11.2
|
||||
# via black
|
||||
pillow==10.0.1
|
||||
pillow==10.1.0
|
||||
# via
|
||||
# diffusers
|
||||
# facexlib
|
||||
# imageio
|
||||
# imaginAIry (setup.py)
|
||||
# matplotlib
|
||||
# refiners
|
||||
# torchvision
|
||||
platformdirs==3.10.0
|
||||
platformdirs==4.0.0
|
||||
# via black
|
||||
pluggy==1.3.0
|
||||
# via pytest
|
||||
protobuf==3.20.3
|
||||
protobuf==4.25.1
|
||||
# via
|
||||
# imaginAIry (setup.py)
|
||||
# open-clip-torch
|
||||
psutil==5.9.5
|
||||
psutil==5.9.6
|
||||
# via imaginAIry (setup.py)
|
||||
pydantic==2.4.2
|
||||
pydantic==2.5.2
|
||||
# via
|
||||
# fastapi
|
||||
# imaginAIry (setup.py)
|
||||
pydantic-core==2.10.1
|
||||
pydantic-core==2.14.5
|
||||
# via pydantic
|
||||
pyparsing==3.1.1
|
||||
# via matplotlib
|
||||
pytest==7.4.2
|
||||
pytest==7.4.3
|
||||
# via
|
||||
# -r requirements-dev.in
|
||||
# pytest-randomly
|
||||
@ -206,7 +221,9 @@ pyyaml==6.0.1
|
||||
# responses
|
||||
# timm
|
||||
# transformers
|
||||
regex==2023.8.8
|
||||
refiners==0.2.0
|
||||
# via imaginAIry (setup.py)
|
||||
regex==2023.10.3
|
||||
# via
|
||||
# diffusers
|
||||
# open-clip-torch
|
||||
@ -220,14 +237,15 @@ requests==2.31.0
|
||||
# responses
|
||||
# torchvision
|
||||
# transformers
|
||||
responses==0.23.3
|
||||
responses==0.24.1
|
||||
# via -r requirements-dev.in
|
||||
ruff==0.0.291
|
||||
ruff==0.1.6
|
||||
# via -r requirements-dev.in
|
||||
safetensors==0.3.3
|
||||
# via
|
||||
# diffusers
|
||||
# imaginAIry (setup.py)
|
||||
# refiners
|
||||
# timm
|
||||
# transformers
|
||||
scipy==1.10.1
|
||||
@ -244,19 +262,21 @@ sniffio==1.3.0
|
||||
# via anyio
|
||||
starlette==0.27.0
|
||||
# via fastapi
|
||||
sympy==1.12
|
||||
# via torch
|
||||
termcolor==2.3.0
|
||||
# via pytest-sugar
|
||||
timm==0.9.7
|
||||
timm==0.9.11
|
||||
# via
|
||||
# imaginAIry (setup.py)
|
||||
# open-clip-torch
|
||||
tokenizers==0.13.3
|
||||
tokenizers==0.15.0
|
||||
# via transformers
|
||||
tomli==2.0.1
|
||||
# via
|
||||
# black
|
||||
# pytest
|
||||
torch==1.13.1
|
||||
torch==2.1.1
|
||||
# via
|
||||
# facexlib
|
||||
# fairscale
|
||||
@ -264,6 +284,7 @@ torch==1.13.1
|
||||
# kornia
|
||||
# open-clip-torch
|
||||
# pytorch-lightning
|
||||
# refiners
|
||||
# timm
|
||||
# torchdiffeq
|
||||
# torchmetrics
|
||||
@ -274,7 +295,7 @@ torchmetrics==1.2.0
|
||||
# via
|
||||
# imaginAIry (setup.py)
|
||||
# pytorch-lightning
|
||||
torchvision==0.14.1
|
||||
torchvision==0.16.1
|
||||
# via
|
||||
# facexlib
|
||||
# imaginAIry (setup.py)
|
||||
@ -288,33 +309,36 @@ tqdm==4.66.1
|
||||
# open-clip-torch
|
||||
# pytorch-lightning
|
||||
# transformers
|
||||
transformers==4.33.3
|
||||
transformers==4.35.2
|
||||
# via imaginAIry (setup.py)
|
||||
types-pyyaml==6.0.12.12
|
||||
# via responses
|
||||
typeguard==2.13.3
|
||||
# via jaxtyping
|
||||
typing-extensions==4.8.0
|
||||
# via
|
||||
# black
|
||||
# fastapi
|
||||
# huggingface-hub
|
||||
# jaxtyping
|
||||
# lightning-utilities
|
||||
# pydantic
|
||||
# pydantic-core
|
||||
# pytorch-lightning
|
||||
# torch
|
||||
# torchvision
|
||||
# uvicorn
|
||||
urllib3==2.0.5
|
||||
urllib3==2.1.0
|
||||
# via
|
||||
# requests
|
||||
# responses
|
||||
uvicorn==0.23.2
|
||||
uvicorn==0.24.0.post1
|
||||
# via imaginAIry (setup.py)
|
||||
wcwidth==0.2.7
|
||||
wcwidth==0.2.12
|
||||
# via ftfy
|
||||
wheel==0.41.2
|
||||
wheel==0.41.3
|
||||
# via -r requirements-dev.in
|
||||
yarl==1.9.2
|
||||
yarl==1.9.3
|
||||
# via aiohttp
|
||||
zipp==3.17.0
|
||||
# via importlib-metadata
|
||||
|
||||
# The following packages are considered to be unsafe in a requirements file:
|
||||
# setuptools
|
||||
|
6
setup.py
@ -81,7 +81,7 @@ setup(
|
||||
"fastapi>=0.70.0",
|
||||
"ftfy>=6.0.1", # for vendored clip
|
||||
# 2.0.0 produced garbage images on macOS
|
||||
"torch>=1.13.1,<2.0.0",
|
||||
"torch>=2.1.0",
|
||||
# https://numpy.org/neps/nep-0029-deprecation_policy.html
|
||||
"numpy>=1.19.0,<1.26.0",
|
||||
"tqdm>=4.64.0",
|
||||
@ -97,6 +97,7 @@ setup(
|
||||
# need to migration to 2.0
|
||||
"pydantic>=2.3.0",
|
||||
"requests>=2.28.1",
|
||||
"refiners>=0.2.0",
|
||||
"einops>=0.3.0",
|
||||
"safetensors>=0.2.1",
|
||||
# scipy is a sub dependency but v1.11 doesn't support python 3.8. https://docs.scipy.org/doc/scipy/dev/toolchain.html#numpy
|
||||
@ -106,10 +107,9 @@ setup(
|
||||
"torchmetrics>=0.6.0",
|
||||
"torchvision>=0.13.1",
|
||||
"transformers>=4.19.2",
|
||||
"triton>=2.0.0; sys_platform!='darwin' and platform_machine!='aarch64'",
|
||||
# "triton>=2.0.0; sys_platform!='darwin' and platform_machine!='aarch64'",
|
||||
"kornia>=0.6",
|
||||
"uvicorn>=0.16.0",
|
||||
"xformers>=0.0.16; sys_platform!='darwin' and platform_machine!='aarch64'",
|
||||
],
|
||||
# don't specify maximum python versions as it can cause very long dependency resolution issues as the resolver
|
||||
# goes back to older versions of packages that didn't specify a maximum
|
||||
|
@ -32,6 +32,8 @@ if get_device() == "mps:0":
|
||||
elif get_device() == "cpu":
|
||||
SAMPLERS_FOR_TESTING = []
|
||||
|
||||
SAMPLERS_FOR_TESTING = ["ddim", "k_dpmpp_2m"]
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def _pre_setup():
|
||||
|
Before Width: | Height: | Size: 368 KiB After Width: | Height: | Size: 375 KiB |
Before Width: | Height: | Size: 355 KiB After Width: | Height: | Size: 352 KiB |
Before Width: | Height: | Size: 531 KiB After Width: | Height: | Size: 541 KiB |
Before Width: | Height: | Size: 486 KiB After Width: | Height: | Size: 522 KiB |
Before Width: | Height: | Size: 572 KiB After Width: | Height: | Size: 570 KiB |
Before Width: | Height: | Size: 564 KiB After Width: | Height: | Size: 569 KiB |
Before Width: | Height: | Size: 305 KiB After Width: | Height: | Size: 303 KiB |
Before Width: | Height: | Size: 304 KiB After Width: | Height: | Size: 308 KiB |
Before Width: | Height: | Size: 248 KiB After Width: | Height: | Size: 242 KiB |
Before Width: | Height: | Size: 245 KiB After Width: | Height: | Size: 250 KiB |
Before Width: | Height: | Size: 387 KiB After Width: | Height: | Size: 390 KiB |
Before Width: | Height: | Size: 391 KiB After Width: | Height: | Size: 392 KiB |
Before Width: | Height: | Size: 263 KiB After Width: | Height: | Size: 273 KiB |
Before Width: | Height: | Size: 243 KiB After Width: | Height: | Size: 253 KiB |
Before Width: | Height: | Size: 264 KiB After Width: | Height: | Size: 279 KiB |
Before Width: | Height: | Size: 266 KiB After Width: | Height: | Size: 281 KiB |
Before Width: | Height: | Size: 248 KiB After Width: | Height: | Size: 276 KiB |
Before Width: | Height: | Size: 257 KiB After Width: | Height: | Size: 278 KiB |
Before Width: | Height: | Size: 556 KiB After Width: | Height: | Size: 558 KiB |
Before Width: | Height: | Size: 2.1 MiB After Width: | Height: | Size: 2.4 MiB |
Before Width: | Height: | Size: 315 KiB After Width: | Height: | Size: 292 KiB |
Before Width: | Height: | Size: 370 KiB After Width: | Height: | Size: 364 KiB |
@ -40,9 +40,7 @@ compare_prompts = [
|
||||
|
||||
|
||||
@pytest.mark.skipif(get_device() != "cuda", reason="Too slow to run on CPU or MPS")
|
||||
@pytest.mark.parametrize(
|
||||
"model_version", ["SD-1.4", "SD-1.5", "SD-2.0", "SD-2.0-v", "SD-2.1", "SD-2.1-v"]
|
||||
)
|
||||
@pytest.mark.parametrize("model_version", ["SD-1.5"])
|
||||
def test_model_versions(filename_base_for_orig_outputs, model_version):
|
||||
"""Test that we can switch between model versions."""
|
||||
prompts = []
|
||||
@ -218,7 +216,6 @@ def test_img_to_img_fruit_2_gold_repeat():
|
||||
"mask_mode": "replace",
|
||||
"steps": 20,
|
||||
"seed": 946188797,
|
||||
"sampler_type": "plms",
|
||||
"fix_faces": True,
|
||||
"upscale": True,
|
||||
}
|
||||
@ -229,7 +226,7 @@ def test_img_to_img_fruit_2_gold_repeat():
|
||||
]
|
||||
for result in imagine(prompts, debug_img_callback=None):
|
||||
result.img.save(
|
||||
f"{TESTS_FOLDER}/test_output/img2img_fruit_2_gold_plms_{get_device()}_run-{run_count:02}.jpg"
|
||||
f"{TESTS_FOLDER}/test_output/img2img_fruit_2_gold_{result.prompt.sampler_type}_{get_device()}_run-{run_count:02}.jpg"
|
||||
)
|
||||
run_count += 1
|
||||
|
||||
@ -242,7 +239,6 @@ def test_img_to_file():
|
||||
height=512 - 64,
|
||||
steps=20,
|
||||
seed=2,
|
||||
sampler_type="PLMS",
|
||||
upscale=True,
|
||||
)
|
||||
out_folder = f"{TESTS_FOLDER}/test_output"
|
||||
@ -261,7 +257,6 @@ def test_inpainting_bench(filename_base_for_outputs, filename_base_for_orig_outp
|
||||
height=512,
|
||||
steps=40,
|
||||
seed=1,
|
||||
sampler_type="plms",
|
||||
)
|
||||
result = next(imagine(prompt))
|
||||
|
||||
@ -287,7 +282,6 @@ def test_cliptext_inpainting_pearl_doctor(
|
||||
width=512,
|
||||
height=512,
|
||||
steps=40,
|
||||
sampler_type="plms",
|
||||
seed=181509347,
|
||||
)
|
||||
result = next(imagine(prompt))
|
||||
@ -355,7 +349,7 @@ def test_large_image(filename_base_for_outputs):
|
||||
prompt_text,
|
||||
width=1920,
|
||||
height=1080,
|
||||
steps=15,
|
||||
steps=30,
|
||||
seed=0,
|
||||
)
|
||||
result = next(imagine(prompt))
|
||||
|
@ -25,8 +25,8 @@ def test_imagine_cmd(monkeypatch):
|
||||
f"{TESTS_FOLDER}/test_output",
|
||||
"--seed",
|
||||
"703425280",
|
||||
"--model",
|
||||
"empty",
|
||||
# "--model",
|
||||
# "empty",
|
||||
"--outdir",
|
||||
f"{TESTS_FOLDER}/test_output",
|
||||
],
|
||||
|
@ -48,7 +48,7 @@ def test_clip_masking(filename_base_for_outputs):
|
||||
assert_image_similar_to_expectation(pred_bin, img_path=img_path, threshold=10)
|
||||
|
||||
prompt = ImaginePrompt(
|
||||
"",
|
||||
"woman in sparkly gold jacket",
|
||||
init_image=img,
|
||||
init_image_strength=0.5,
|
||||
# lower steps for faster tests
|
||||
@ -58,7 +58,7 @@ def test_clip_masking(filename_base_for_outputs):
|
||||
upscale=False,
|
||||
fix_faces=True,
|
||||
seed=42,
|
||||
sampler_type="plms",
|
||||
# sampler_type="plms",
|
||||
)
|
||||
|
||||
result = next(imagine(prompt))
|
||||
|
@ -26,12 +26,12 @@ def create_model_of_n_bytes(n):
|
||||
@pytest.mark.parametrize(
|
||||
"model_version",
|
||||
[
|
||||
"SD-1.4",
|
||||
# "SD-1.4",
|
||||
"SD-1.5",
|
||||
"SD-2.0",
|
||||
"SD-2.0-v",
|
||||
"SD-2.1",
|
||||
"SD-2.1-v",
|
||||
# "SD-2.0",
|
||||
# "SD-2.0-v",
|
||||
# "SD-2.1",
|
||||
# "SD-2.1-v",
|
||||
"openjourney-v1",
|
||||
"openjourney-v2",
|
||||
"openjourney-v4",
|
||||
|
@ -34,7 +34,7 @@ def test_get_device(monkeypatch):
|
||||
get_device.cache_clear()
|
||||
m_cuda_is_available.side_effect = lambda: False
|
||||
m_mps_is_available.side_effect = lambda: True
|
||||
assert get_device() == "mps:0"
|
||||
assert get_device() == "mps"
|
||||
|
||||
get_device.cache_clear()
|
||||
m_cuda_is_available.side_effect = lambda: False
|
||||
|