mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-11-19 03:25:41 +00:00
feature: remove training feature
This commit is contained in:
parent
ef0f44646e
commit
db85f0898a
@ -88,6 +88,7 @@ cutting edge features (SDXL, image prompts, etc) which will be added to imaginai
|
||||
- deprecated: support for python 3.8, 3.9
|
||||
- deprecated: support for torch 1.13
|
||||
- deprecated: support for Stable Diffusion versions 1.4, 2.0, and 2.1
|
||||
- deprecated: image training
|
||||
- broken: most samplers, tile/details controlnet, and model memory management
|
||||
|
||||
### Run API server and StableStudio web interface (alpha)
|
||||
@ -476,8 +477,7 @@ a bowl full of gold bars sitting on a table
|
||||
- Prompt metadata saved into image file metadata
|
||||
- Have AI generate captions for images `aimg describe <filename-or-url>`
|
||||
- Interactive prompt: just run `aimg`
|
||||
- finetune your own image model. kind of like dreambooth. Read instructions on ["Concept Training"](docs/concept-training.md) page
|
||||
|
||||
|
||||
## How To
|
||||
|
||||
For full command line instructions run `aimg --help`
|
||||
|
@ -1,85 +0,0 @@
|
||||
# Adding a concept to Stable Diffusion
|
||||
|
||||
You can use Imaginairy to teach the model a new concept (a person, thing, style, etc) using the `aimg train-concept`
|
||||
command.
|
||||
|
||||
## Requirements
|
||||
- Graphics card: 3090 or better
|
||||
- Linux
|
||||
- A working Imaginairy installation
|
||||
- a folder of images of the concept you want to teach the model
|
||||
|
||||
## Background
|
||||
|
||||
To train the model we show it a lot of images of the concept we want to teach it. The problem is the model can easily
|
||||
overfit to the images we show it. To prevent this we also show it images of the class of thing that is being trained.
|
||||
Imaginairy will generate the images needed for this before running the training job.
|
||||
|
||||
Provided a directory of concept images, a concept token, and a class token, this command will train the model
|
||||
to generate images of that concept.
|
||||
|
||||
|
||||
This happens in a 3-step process:
|
||||
|
||||
1. Cropping and resizing your training images. If --person is set we crop to include the face.
|
||||
2. Generating a set of class images to train on. This helps prevent overfitting.
|
||||
3. Training the model on the concept and class images.
|
||||
|
||||
The output of this command is a new model weights file that you can use with the --model option.
|
||||
|
||||
|
||||
|
||||
## Instructions
|
||||
|
||||
1. Gather a set of images of the concept you want to train on. The images should show the subject from a variety of angles
|
||||
and in a variety of situations.
|
||||
2. Run `aimg train-concept` to train the model.
|
||||
|
||||
- Concept label: For a person, firstnamelastname should be fine.
|
||||
- If all the training images are photos you should add "a photo of" to the beginning of the concept label.
|
||||
- Class label: This is the category of the things beings trained on. For people this is typically "person", "man"
|
||||
or "woman".
|
||||
- If all the training images are photos you should add "a photo of" to the beginning of the class label.
|
||||
- CLass images will be generated for you if you do not provide them.
|
||||
|
||||
For example, if you were training on photos of a man named bill hamilton you could run the following:
|
||||
|
||||
```
|
||||
aimg train-concept \\
|
||||
--person \\
|
||||
--concept-label "photo of billhamilton man" \\
|
||||
--concept-images-dir ./images/billhamilton \\
|
||||
--class-label "photo of a man" \\
|
||||
--class-images-dir ./images/man
|
||||
```
|
||||
3. Stop training before it overfits.
|
||||
- The training script will output checkpoint ckpt files into the logs folder of wherever it is run from. You can also
|
||||
monitor generated images in the logs/images folder. They will be the ones named "sample"
|
||||
- I don't have great advice on when to stop training yet. I stopped mine at epoch 62 at it didn't seem quite good enough, at epoch 111 it
|
||||
produced my face correctly 50% of the time but also seemed overfit in some ways (always placing me in the same clothes or background as training photos).
|
||||
- You can monitor model training progress in Tensorboard. Run `tensorboard --logdir lightning_logs` and open the link it gives you in your browser.
|
||||
|
||||
4. Prune the model to bring the size from 11gb to ~4gb: `aimg prune-ckpt logs/2023-01-15T05-52-06/checkpoints/epoch\=000049.ckpt`. Copy it somewhere
|
||||
and give it a meaninful name.
|
||||
|
||||
## Using the new model
|
||||
You can reference the model like this in imaginairy:
|
||||
`imagine --model my-models/billhamilton-man-e111.ckpt`
|
||||
|
||||
When you use the model you should prompt with `firstnamelastname classname` (e.g. `billhamilton man`).
|
||||
|
||||
|
||||
## Disclaimers
|
||||
|
||||
- The settings imaginairy uses to train the model are different than other software projects. As such you cannot follow
|
||||
advice you may read from other tutorials regarding learning rate, epochs, steps, batch size. They are not directly
|
||||
comparable. In laymans terms the "steps" are much bigger in imaginairy.
|
||||
- I consider this training feature experimental and don't currently plan to offer support for it. Any further work will
|
||||
be at my leisure. As a result I may close any reported issues related to this feature.
|
||||
- You can find a lot more relevant information here: https://github.com/JoePenna/Dreambooth-Stable-Diffusion
|
||||
|
||||
## Todo
|
||||
- figure out how to improve consistency of quality from trained model
|
||||
- train on the depth guided model instead of SD 1.5 since that will enable more consistent output
|
||||
- figure out metric to use for stopping training
|
||||
- possibly swap out and randomize backgrounds on training photos so over-fitting does not occur
|
@ -34,9 +34,7 @@ from imaginairy.cli.shared import _imagine_cmd, add_options, common_options
|
||||
)
|
||||
@click.option(
|
||||
"--control-strength",
|
||||
help=(
|
||||
"Strength of the control signal."
|
||||
),
|
||||
help=("Strength of the control signal."),
|
||||
multiple=True,
|
||||
)
|
||||
@click.option(
|
||||
|
@ -9,7 +9,6 @@ from imaginairy.cli.edit import edit_cmd
|
||||
from imaginairy.cli.edit_demo import edit_demo_cmd
|
||||
from imaginairy.cli.imagine import imagine_cmd
|
||||
from imaginairy.cli.run_api import run_server_cmd
|
||||
from imaginairy.cli.train import prep_images_cmd, prune_ckpt_cmd, train_concept_cmd
|
||||
from imaginairy.cli.upscale import upscale_cmd
|
||||
from imaginairy.cli.videogen import videogen_cmd
|
||||
|
||||
@ -46,9 +45,8 @@ aimg.add_command(describe_cmd, name="describe")
|
||||
aimg.add_command(edit_cmd, name="edit")
|
||||
aimg.add_command(edit_demo_cmd, name="edit-demo")
|
||||
aimg.add_command(imagine_cmd, name="imagine")
|
||||
aimg.add_command(prep_images_cmd, name="prep-images")
|
||||
aimg.add_command(prune_ckpt_cmd, name="prune-ckpt")
|
||||
aimg.add_command(train_concept_cmd, name="train-concept")
|
||||
# aimg.add_command(prep_images_cmd, name="prep-images")
|
||||
# aimg.add_command(prune_ckpt_cmd, name="prune-ckpt")
|
||||
aimg.add_command(upscale_cmd, name="upscale")
|
||||
aimg.add_command(run_server_cmd, name="server")
|
||||
aimg.add_command(videogen_cmd, name="videogen")
|
||||
|
@ -22,7 +22,6 @@ class ModelConfig:
|
||||
config_path: str
|
||||
weights_url: str
|
||||
default_image_size: int
|
||||
weights_url_full: str = None
|
||||
forced_attn_precision: str = "default"
|
||||
default_negative_prompt: str = DEFAULT_NEGATIVE_PROMPT
|
||||
alias: str = None
|
||||
@ -36,7 +35,6 @@ MODEL_CONFIGS = [
|
||||
short_name="SD-1.5",
|
||||
config_path="configs/stable-diffusion-v1.yaml",
|
||||
weights_url="https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/889b629140e71758e1e0006e355c331a5744b4bf/v1-5-pruned-emaonly.ckpt",
|
||||
weights_url_full="https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/889b629140e71758e1e0006e355c331a5744b4bf/v1-5-pruned.ckpt",
|
||||
default_image_size=512,
|
||||
alias="sd15",
|
||||
),
|
||||
|
@ -154,7 +154,6 @@ def get_diffusion_model(
|
||||
control_weights_locations=None,
|
||||
half_mode=None,
|
||||
for_inpainting=False,
|
||||
for_training=False,
|
||||
):
|
||||
"""
|
||||
Load a diffusion model.
|
||||
@ -168,7 +167,6 @@ def get_diffusion_model(
|
||||
half_mode,
|
||||
for_inpainting,
|
||||
control_weights_locations=control_weights_locations,
|
||||
for_training=for_training,
|
||||
)
|
||||
except HuggingFaceAuthorizationError as e:
|
||||
if for_inpainting:
|
||||
@ -180,7 +178,6 @@ def get_diffusion_model(
|
||||
config_path,
|
||||
half_mode,
|
||||
for_inpainting=False,
|
||||
for_training=for_training,
|
||||
control_weights_locations=control_weights_locations,
|
||||
)
|
||||
raise
|
||||
@ -191,7 +188,6 @@ def _get_diffusion_model(
|
||||
config_path="configs/stable-diffusion-v1.yaml",
|
||||
half_mode=None,
|
||||
for_inpainting=False,
|
||||
for_training=False,
|
||||
control_weights_locations=None,
|
||||
):
|
||||
"""
|
||||
@ -211,7 +207,6 @@ def _get_diffusion_model(
|
||||
config_path=config_path,
|
||||
control_weights_paths=control_weights_locations,
|
||||
for_inpainting=for_inpainting,
|
||||
for_training=for_training,
|
||||
)
|
||||
# some models need the attention calculated in float32
|
||||
if model_config is not None:
|
||||
@ -222,7 +217,6 @@ def _get_diffusion_model(
|
||||
config_path=config_path,
|
||||
weights_location=weights_location,
|
||||
half_mode=half_mode,
|
||||
for_training=for_training,
|
||||
)
|
||||
MOST_RECENTLY_LOADED_MODEL = diffusion_model
|
||||
if control_weights_locations:
|
||||
@ -240,7 +234,6 @@ def get_diffusion_model_refiners(
|
||||
control_weights_locations=None,
|
||||
dtype=None,
|
||||
for_inpainting=False,
|
||||
for_training=False,
|
||||
):
|
||||
"""
|
||||
Load a diffusion model.
|
||||
@ -254,7 +247,6 @@ def get_diffusion_model_refiners(
|
||||
for_inpainting,
|
||||
dtype=dtype,
|
||||
control_weights_locations=control_weights_locations,
|
||||
for_training=for_training,
|
||||
)
|
||||
except HuggingFaceAuthorizationError as e:
|
||||
if for_inpainting:
|
||||
@ -266,7 +258,6 @@ def get_diffusion_model_refiners(
|
||||
config_path,
|
||||
dtype=dtype,
|
||||
for_inpainting=False,
|
||||
for_training=for_training,
|
||||
control_weights_locations=control_weights_locations,
|
||||
)
|
||||
raise
|
||||
@ -276,7 +267,6 @@ def _get_diffusion_model_refiners(
|
||||
weights_location=iconfig.DEFAULT_MODEL,
|
||||
config_path="configs/stable-diffusion-v1.yaml",
|
||||
for_inpainting=False,
|
||||
for_training=False,
|
||||
control_weights_locations=None,
|
||||
device=None,
|
||||
dtype=torch.float16,
|
||||
@ -291,7 +281,6 @@ def _get_diffusion_model_refiners(
|
||||
weights_location=weights_location,
|
||||
config_path=config_path,
|
||||
for_inpainting=for_inpainting,
|
||||
for_training=for_training,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
@ -304,7 +293,6 @@ def _get_diffusion_model_refiners_only(
|
||||
weights_location=iconfig.DEFAULT_MODEL,
|
||||
config_path="configs/stable-diffusion-v1.yaml",
|
||||
for_inpainting=False,
|
||||
for_training=False,
|
||||
control_weights_locations=None,
|
||||
device=None,
|
||||
dtype=torch.float16,
|
||||
@ -334,7 +322,6 @@ def _get_diffusion_model_refiners_only(
|
||||
config_path=config_path,
|
||||
control_weights_paths=control_weights_locations,
|
||||
for_inpainting=for_inpainting,
|
||||
for_training=for_training,
|
||||
)
|
||||
# some models need the attention calculated in float32
|
||||
if model_config is not None:
|
||||
@ -378,11 +365,8 @@ def _get_diffusion_model_refiners_only(
|
||||
|
||||
|
||||
@memory_managed_model("stable-diffusion", memory_usage_mb=1951)
|
||||
def _load_diffusion_model(config_path, weights_location, half_mode, for_training):
|
||||
def _load_diffusion_model(config_path, weights_location, half_mode):
|
||||
model_config = OmegaConf.load(f"{PKG_ROOT}/{config_path}")
|
||||
if for_training:
|
||||
model_config.use_ema = True
|
||||
# model_config.use_scheduler = True
|
||||
|
||||
# only run half-mode on cuda. run it by default
|
||||
half_mode = half_mode is None and get_device() == "cuda"
|
||||
@ -443,7 +427,6 @@ def resolve_model_paths(
|
||||
config_path=None,
|
||||
control_weights_paths=None,
|
||||
for_inpainting=False,
|
||||
for_training=False,
|
||||
):
|
||||
"""Resolve weight and config path if they happen to be shortcuts."""
|
||||
model_metadata_w = iconfig.MODEL_CONFIG_SHORTCUTS.get(weights_path, None)
|
||||
@ -466,13 +449,8 @@ def resolve_model_paths(
|
||||
if model_metadata_w:
|
||||
if config_path is None:
|
||||
config_path = model_metadata_w.config_path
|
||||
if for_training:
|
||||
weights_path = model_metadata_w.weights_url_full
|
||||
if weights_path is None:
|
||||
msg = "No full training weights configured for this model. Edit the code or subimt a github issue."
|
||||
raise ValueError(msg)
|
||||
else:
|
||||
weights_path = model_metadata_w.weights_url
|
||||
|
||||
weights_path = model_metadata_w.weights_url
|
||||
|
||||
if model_metadata_c:
|
||||
config_path = model_metadata_c.config_path
|
||||
|
@ -1,533 +0,0 @@
|
||||
import datetime
|
||||
import logging
|
||||
import os
|
||||
import signal
|
||||
import time
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchvision
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image
|
||||
from pytorch_lightning import seed_everything
|
||||
from pytorch_lightning.callbacks import Callback, LearningRateMonitor
|
||||
|
||||
try:
|
||||
from pytorch_lightning.strategies import DDPStrategy
|
||||
except ImportError:
|
||||
# let's not break all of imaginairy just because a training import doesn't exist in an older version of PL
|
||||
# Use >= 1.6.0 to make this work
|
||||
DDPStrategy = None
|
||||
import contextlib
|
||||
|
||||
from pytorch_lightning.trainer import Trainer
|
||||
from pytorch_lightning.utilities import rank_zero_info
|
||||
from pytorch_lightning.utilities.distributed import rank_zero_only
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
from imaginairy import config
|
||||
from imaginairy.model_manager import get_diffusion_model
|
||||
from imaginairy.training_tools.single_concept import SingleConceptDataset
|
||||
from imaginairy.utils import get_device, instantiate_from_config
|
||||
|
||||
mod_logger = logging.getLogger(__name__)
|
||||
|
||||
referenced_by_string = [LearningRateMonitor]
|
||||
|
||||
|
||||
class WrappedDataset(Dataset):
|
||||
"""Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset."""
|
||||
|
||||
def __init__(self, dataset):
|
||||
self.data = dataset
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.data[idx]
|
||||
|
||||
|
||||
def worker_init_fn(_):
|
||||
worker_info = torch.utils.data.get_worker_info()
|
||||
|
||||
dataset = worker_info.dataset
|
||||
worker_id = worker_info.id
|
||||
|
||||
if isinstance(dataset, SingleConceptDataset):
|
||||
# split_size = dataset.num_records // worker_info.num_workers
|
||||
# reset num_records to the true number to retain reliable length information
|
||||
# dataset.sample_ids = dataset.valid_ids[
|
||||
# worker_id * split_size : (worker_id + 1) * split_size
|
||||
# ]
|
||||
current_id = np.random.choice(len(np.random.get_state()[1]), 1)
|
||||
return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
|
||||
|
||||
return np.random.seed(np.random.get_state()[1][0] + worker_id)
|
||||
|
||||
|
||||
class DataModuleFromConfig(pl.LightningDataModule):
|
||||
def __init__(
|
||||
self,
|
||||
batch_size,
|
||||
train=None,
|
||||
validation=None,
|
||||
test=None,
|
||||
predict=None,
|
||||
wrap=False,
|
||||
num_workers=None,
|
||||
shuffle_test_loader=False,
|
||||
use_worker_init_fn=False,
|
||||
shuffle_val_dataloader=False,
|
||||
num_val_workers=0,
|
||||
):
|
||||
super().__init__()
|
||||
self.batch_size = batch_size
|
||||
self.dataset_configs = {}
|
||||
self.num_workers = num_workers if num_workers is not None else batch_size * 2
|
||||
if num_val_workers is None:
|
||||
self.num_val_workers = self.num_workers
|
||||
else:
|
||||
self.num_val_workers = num_val_workers
|
||||
self.use_worker_init_fn = use_worker_init_fn
|
||||
if train is not None:
|
||||
self.dataset_configs["train"] = train
|
||||
self.train_dataloader = self._train_dataloader
|
||||
if validation is not None:
|
||||
self.dataset_configs["validation"] = validation
|
||||
self.val_dataloader = partial(
|
||||
self._val_dataloader, shuffle=shuffle_val_dataloader
|
||||
)
|
||||
if test is not None:
|
||||
self.dataset_configs["test"] = test
|
||||
self.test_dataloader = partial(
|
||||
self._test_dataloader, shuffle=shuffle_test_loader
|
||||
)
|
||||
if predict is not None:
|
||||
self.dataset_configs["predict"] = predict
|
||||
self.predict_dataloader = self._predict_dataloader
|
||||
self.wrap = wrap
|
||||
self.datasets = None
|
||||
|
||||
def prepare_data(self):
|
||||
for data_cfg in self.dataset_configs.values():
|
||||
instantiate_from_config(data_cfg)
|
||||
|
||||
def setup(self, stage=None):
|
||||
self.datasets = {
|
||||
k: instantiate_from_config(c) for k, c in self.dataset_configs.items()
|
||||
}
|
||||
if self.wrap:
|
||||
self.datasets = {k: WrappedDataset(v) for k, v in self.datasets.items()}
|
||||
|
||||
def _train_dataloader(self):
|
||||
is_iterable_dataset = isinstance(self.datasets["train"], SingleConceptDataset)
|
||||
if is_iterable_dataset or self.use_worker_init_fn:
|
||||
pass
|
||||
else:
|
||||
pass
|
||||
return DataLoader(
|
||||
self.datasets["train"],
|
||||
batch_size=self.batch_size,
|
||||
num_workers=self.num_workers,
|
||||
shuffle=True,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
def _val_dataloader(self, shuffle=False):
|
||||
if (
|
||||
isinstance(self.datasets["validation"], SingleConceptDataset)
|
||||
or self.use_worker_init_fn
|
||||
):
|
||||
init_fn = worker_init_fn
|
||||
else:
|
||||
init_fn = None
|
||||
return DataLoader(
|
||||
self.datasets["validation"],
|
||||
batch_size=self.batch_size,
|
||||
num_workers=self.num_val_workers,
|
||||
worker_init_fn=init_fn,
|
||||
shuffle=shuffle,
|
||||
)
|
||||
|
||||
def _test_dataloader(self, shuffle=False):
|
||||
is_iterable_dataset = isinstance(self.datasets["train"], SingleConceptDataset)
|
||||
if is_iterable_dataset or self.use_worker_init_fn:
|
||||
init_fn = worker_init_fn
|
||||
else:
|
||||
init_fn = None
|
||||
is_iterable_dataset = False
|
||||
|
||||
# do not shuffle dataloader for iterable dataset
|
||||
shuffle = shuffle and (not is_iterable_dataset)
|
||||
|
||||
return DataLoader(
|
||||
self.datasets["test"],
|
||||
batch_size=self.batch_size,
|
||||
num_workers=self.num_workers,
|
||||
worker_init_fn=init_fn,
|
||||
shuffle=shuffle,
|
||||
)
|
||||
|
||||
def _predict_dataloader(self, shuffle=False):
|
||||
if (
|
||||
isinstance(self.datasets["predict"], SingleConceptDataset)
|
||||
or self.use_worker_init_fn
|
||||
):
|
||||
init_fn = worker_init_fn
|
||||
else:
|
||||
init_fn = None
|
||||
return DataLoader(
|
||||
self.datasets["predict"],
|
||||
batch_size=self.batch_size,
|
||||
num_workers=self.num_workers,
|
||||
worker_init_fn=init_fn,
|
||||
)
|
||||
|
||||
|
||||
class SetupCallback(Callback):
|
||||
def __init__(
|
||||
self,
|
||||
resume,
|
||||
now,
|
||||
logdir,
|
||||
ckptdir,
|
||||
cfgdir,
|
||||
):
|
||||
super().__init__()
|
||||
self.resume = resume
|
||||
self.now = now
|
||||
self.logdir = logdir
|
||||
self.ckptdir = ckptdir
|
||||
self.cfgdir = cfgdir
|
||||
|
||||
def on_keyboard_interrupt(self, trainer, pl_module):
|
||||
if trainer.global_rank == 0:
|
||||
mod_logger.info("Stopping execution and saving final checkpoint.")
|
||||
ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
|
||||
trainer.save_checkpoint(ckpt_path)
|
||||
|
||||
def on_fit_start(self, trainer, pl_module):
|
||||
if trainer.global_rank == 0:
|
||||
# Create logdirs and save configs
|
||||
os.makedirs(self.logdir, exist_ok=True)
|
||||
os.makedirs(self.ckptdir, exist_ok=True)
|
||||
os.makedirs(self.cfgdir, exist_ok=True)
|
||||
|
||||
else:
|
||||
# ModelCheckpoint callback created log directory --- remove it
|
||||
if not self.resume and os.path.exists(self.logdir):
|
||||
dst, name = os.path.split(self.logdir)
|
||||
dst = os.path.join(dst, "child_runs", name)
|
||||
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
||||
with contextlib.suppress(FileNotFoundError):
|
||||
os.rename(self.logdir, dst)
|
||||
|
||||
|
||||
class ImageLogger(Callback):
|
||||
def __init__(
|
||||
self,
|
||||
batch_frequency,
|
||||
max_images,
|
||||
clamp=True,
|
||||
increase_log_steps=True,
|
||||
rescale=True,
|
||||
disabled=False,
|
||||
log_on_batch_idx=False,
|
||||
log_first_step=False,
|
||||
log_images_kwargs=None,
|
||||
log_all_val=False,
|
||||
concept_label=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.rescale = rescale
|
||||
self.batch_freq = batch_frequency
|
||||
self.max_images = max_images
|
||||
self.logger_log_images = {}
|
||||
self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)]
|
||||
if not increase_log_steps:
|
||||
self.log_steps = [self.batch_freq]
|
||||
self.clamp = clamp
|
||||
self.disabled = disabled
|
||||
self.log_on_batch_idx = log_on_batch_idx
|
||||
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
|
||||
self.log_first_step = log_first_step
|
||||
self.log_all_val = log_all_val
|
||||
self.concept_label = concept_label
|
||||
|
||||
@rank_zero_only
|
||||
def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx):
|
||||
root = os.path.join(save_dir, "logs", "images", split)
|
||||
for k in images:
|
||||
grid = torchvision.utils.make_grid(images[k], nrow=4)
|
||||
if self.rescale:
|
||||
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
||||
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
||||
grid = grid.numpy()
|
||||
grid = (grid * 255).astype(np.uint8)
|
||||
filename = (
|
||||
f"{k}_gs-{global_step:06}_e-{current_epoch:06}_b-{batch_idx:06}.png"
|
||||
)
|
||||
path = os.path.join(root, filename)
|
||||
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
||||
Image.fromarray(grid).save(path)
|
||||
|
||||
def log_img(self, pl_module, batch, batch_idx, split="train"):
|
||||
# always generate the concept label
|
||||
batch["txt"][0] = self.concept_label
|
||||
|
||||
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
|
||||
if self.log_all_val and split == "val":
|
||||
should_log = True
|
||||
else:
|
||||
should_log = self.check_frequency(check_idx)
|
||||
if (
|
||||
should_log
|
||||
and (batch_idx % self.batch_freq == 0)
|
||||
and hasattr(pl_module, "log_images")
|
||||
and callable(pl_module.log_images)
|
||||
and self.max_images > 0
|
||||
):
|
||||
logger = type(pl_module.logger)
|
||||
|
||||
is_train = pl_module.training
|
||||
if is_train:
|
||||
pl_module.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
images = pl_module.log_images(
|
||||
batch, split=split, **self.log_images_kwargs
|
||||
)
|
||||
|
||||
for k in images:
|
||||
N = min(images[k].shape[0], self.max_images)
|
||||
images[k] = images[k][:N]
|
||||
if isinstance(images[k], torch.Tensor):
|
||||
images[k] = images[k].detach().cpu()
|
||||
if self.clamp:
|
||||
images[k] = torch.clamp(images[k], -1.0, 1.0)
|
||||
|
||||
self.log_local(
|
||||
pl_module.logger.save_dir,
|
||||
split,
|
||||
images,
|
||||
pl_module.global_step,
|
||||
pl_module.current_epoch,
|
||||
batch_idx,
|
||||
)
|
||||
|
||||
logger_log_images = self.logger_log_images.get(
|
||||
logger, lambda *args, **kwargs: None
|
||||
)
|
||||
logger_log_images(pl_module, images, pl_module.global_step, split)
|
||||
|
||||
if is_train:
|
||||
pl_module.train()
|
||||
|
||||
def check_frequency(self, check_idx):
|
||||
if (check_idx % self.batch_freq) == 0 and (
|
||||
check_idx > 0 or self.log_first_step
|
||||
):
|
||||
return True
|
||||
return False
|
||||
|
||||
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
|
||||
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
|
||||
self.log_img(pl_module, batch, batch_idx, split="train")
|
||||
|
||||
def on_validation_batch_end(
|
||||
self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx
|
||||
):
|
||||
if not self.disabled and pl_module.global_step > 0:
|
||||
self.log_img(pl_module, batch, batch_idx, split="val")
|
||||
if (
|
||||
hasattr(pl_module, "calibrate_grad_norm")
|
||||
and (pl_module.calibrate_grad_norm and batch_idx % 25 == 0)
|
||||
and batch_idx > 0
|
||||
):
|
||||
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
|
||||
|
||||
|
||||
class CUDACallback(Callback):
|
||||
# see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
|
||||
def on_train_epoch_start(self, trainer, pl_module):
|
||||
# Reset the memory use counter
|
||||
if "cuda" in get_device():
|
||||
torch.cuda.reset_peak_memory_stats(trainer.strategy.root_device.index)
|
||||
torch.cuda.synchronize(trainer.strategy.root_device.index)
|
||||
self.start_time = time.time()
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module):
|
||||
if "cuda" in get_device():
|
||||
torch.cuda.synchronize(trainer.strategy.root_device.index)
|
||||
max_memory = (
|
||||
torch.cuda.max_memory_allocated(trainer.strategy.root_device.index)
|
||||
/ 2**20
|
||||
)
|
||||
epoch_time = time.time() - self.start_time
|
||||
|
||||
try:
|
||||
max_memory = trainer.training_type_plugin.reduce(max_memory)
|
||||
epoch_time = trainer.training_type_plugin.reduce(epoch_time)
|
||||
|
||||
rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
|
||||
rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
|
||||
def train_diffusion_model(
|
||||
concept_label,
|
||||
concept_images_dir,
|
||||
class_label,
|
||||
class_images_dir,
|
||||
weights_location=config.DEFAULT_MODEL,
|
||||
logdir="logs",
|
||||
learning_rate=1e-6,
|
||||
accumulate_grad_batches=32,
|
||||
resume=None,
|
||||
):
|
||||
"""
|
||||
Train a diffusion model on a single concept.
|
||||
|
||||
accumulate_grad_batches used to simulate a bigger batch size - https://arxiv.org/pdf/1711.00489.pdf
|
||||
"""
|
||||
if DDPStrategy is None:
|
||||
msg = "Please install pytorch-lightning>=1.6.0 to train a model"
|
||||
raise ImportError(msg)
|
||||
|
||||
batch_size = 1
|
||||
seed = 23
|
||||
num_workers = 1
|
||||
num_val_workers = 0
|
||||
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") # noqa: DTZ005
|
||||
logdir = os.path.join(logdir, now)
|
||||
|
||||
ckpt_output_dir = os.path.join(logdir, "checkpoints")
|
||||
cfg_output_dir = os.path.join(logdir, "configs")
|
||||
seed_everything(seed)
|
||||
model = get_diffusion_model(
|
||||
weights_location=weights_location, half_mode=False, for_training=True
|
||||
)._model
|
||||
model.learning_rate = learning_rate * accumulate_grad_batches * batch_size
|
||||
|
||||
# add callback which sets up log directory
|
||||
default_callbacks_cfg = {
|
||||
"setup_callback": {
|
||||
"target": "imaginairy.train.SetupCallback",
|
||||
"params": {
|
||||
"resume": False,
|
||||
"now": now,
|
||||
"logdir": logdir,
|
||||
"ckptdir": ckpt_output_dir,
|
||||
"cfgdir": cfg_output_dir,
|
||||
},
|
||||
},
|
||||
"image_logger": {
|
||||
"target": "imaginairy.train.ImageLogger",
|
||||
"params": {
|
||||
"batch_frequency": 10,
|
||||
"max_images": 1,
|
||||
"clamp": True,
|
||||
"increase_log_steps": False,
|
||||
"log_first_step": True,
|
||||
"log_all_val": True,
|
||||
"concept_label": concept_label,
|
||||
"log_images_kwargs": {
|
||||
"use_ema_scope": True,
|
||||
"inpaint": False,
|
||||
"plot_progressive_rows": False,
|
||||
"plot_diffusion_rows": False,
|
||||
"N": 1,
|
||||
"unconditional_guidance_scale:": 7.5,
|
||||
"unconditional_guidance_label": [""],
|
||||
"ddim_steps": 20,
|
||||
},
|
||||
},
|
||||
},
|
||||
"learning_rate_logger": {
|
||||
"target": "imaginairy.train.LearningRateMonitor",
|
||||
"params": {
|
||||
"logging_interval": "step",
|
||||
# "log_momentum": True
|
||||
},
|
||||
},
|
||||
"cuda_callback": {"target": "imaginairy.train.CUDACallback"},
|
||||
}
|
||||
|
||||
default_modelckpt_cfg = {
|
||||
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
|
||||
"params": {
|
||||
"dirpath": ckpt_output_dir,
|
||||
"filename": "{epoch:06}",
|
||||
"verbose": True,
|
||||
"save_last": True,
|
||||
"every_n_train_steps": 50,
|
||||
"save_top_k": -1,
|
||||
"monitor": None,
|
||||
},
|
||||
}
|
||||
|
||||
modelckpt_cfg = OmegaConf.create(default_modelckpt_cfg)
|
||||
default_callbacks_cfg.update({"checkpoint_callback": modelckpt_cfg})
|
||||
|
||||
callbacks_cfg = OmegaConf.create(default_callbacks_cfg)
|
||||
|
||||
dataset_config = {
|
||||
"concept_label": concept_label,
|
||||
"concept_images_dir": concept_images_dir,
|
||||
"class_label": class_label,
|
||||
"class_images_dir": class_images_dir,
|
||||
"image_transforms": [
|
||||
{
|
||||
"target": "torchvision.transforms.Resize",
|
||||
"params": {"size": 512, "interpolation": 3},
|
||||
},
|
||||
{"target": "torchvision.transforms.RandomCrop", "params": {"size": 512}},
|
||||
],
|
||||
}
|
||||
|
||||
data_module_config = {
|
||||
"batch_size": batch_size,
|
||||
"num_workers": num_workers,
|
||||
"num_val_workers": num_val_workers,
|
||||
"train": {
|
||||
"target": "imaginairy.training_tools.single_concept.SingleConceptDataset",
|
||||
"params": dataset_config,
|
||||
},
|
||||
}
|
||||
trainer = Trainer(
|
||||
benchmark=True,
|
||||
num_sanity_val_steps=0,
|
||||
accumulate_grad_batches=accumulate_grad_batches,
|
||||
strategy=DDPStrategy(),
|
||||
callbacks=[instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg],
|
||||
gpus=1,
|
||||
default_root_dir=".",
|
||||
)
|
||||
trainer.logdir = logdir
|
||||
|
||||
data = DataModuleFromConfig(**data_module_config)
|
||||
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
|
||||
# calling these ourselves should not be necessary but it is.
|
||||
# lightning still takes care of proper multiprocessing though
|
||||
data.prepare_data()
|
||||
data.setup()
|
||||
|
||||
def melk(*args, **kwargs):
|
||||
if trainer.global_rank == 0:
|
||||
mod_logger.info("Summoning checkpoint.")
|
||||
ckpt_path = os.path.join(ckpt_output_dir, "last.ckpt")
|
||||
trainer.save_checkpoint(ckpt_path)
|
||||
|
||||
signal.signal(signal.SIGUSR1, melk)
|
||||
try:
|
||||
try:
|
||||
trainer.fit(model, data)
|
||||
except Exception:
|
||||
melk()
|
||||
raise
|
||||
finally:
|
||||
mod_logger.info(trainer.profiler.summary())
|
Loading…
Reference in New Issue
Block a user