mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-11-07 09:20:35 +00:00
autoformat
This commit is contained in:
parent
df28bf8805
commit
a3a0de08e9
@ -11,8 +11,8 @@ from functools import partial
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
|
from torch import nn
|
||||||
from torchvision.utils import make_grid
|
from torchvision.utils import make_grid
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
@ -348,16 +348,10 @@ class LatentDiffusion(DDPM):
|
|||||||
model = instantiate_from_config(config)
|
model = instantiate_from_config(config)
|
||||||
self.cond_stage_model = model
|
self.cond_stage_model = model
|
||||||
|
|
||||||
def _get_denoise_row_from_list(
|
def _get_denoise_row_from_list(self, samples, desc=""):
|
||||||
self, samples, desc=""
|
|
||||||
):
|
|
||||||
denoise_row = []
|
denoise_row = []
|
||||||
for zd in tqdm(samples, desc=desc):
|
for zd in tqdm(samples, desc=desc):
|
||||||
denoise_row.append(
|
denoise_row.append(self.decode_first_stage(zd.to(self.device)))
|
||||||
self.decode_first_stage(
|
|
||||||
zd.to(self.device)
|
|
||||||
)
|
|
||||||
)
|
|
||||||
n_imgs_per_row = len(denoise_row)
|
n_imgs_per_row = len(denoise_row)
|
||||||
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
||||||
denoise_grid = rearrange(denoise_row, "n b c h w -> b n c h w")
|
denoise_grid = rearrange(denoise_row, "n b c h w -> b n c h w")
|
||||||
|
@ -15,6 +15,7 @@ from torch import autocast
|
|||||||
from imaginairy.utils import get_device, pillow_img_to_torch_image
|
from imaginairy.utils import get_device, pillow_img_to_torch_image
|
||||||
from imaginairy.vendored import k_diffusion as K
|
from imaginairy.vendored import k_diffusion as K
|
||||||
|
|
||||||
|
|
||||||
def pil_img_to_latent(model, img, batch_size=1, half=True):
|
def pil_img_to_latent(model, img, batch_size=1, half=True):
|
||||||
# init_image = pil_img_to_torch(img, half=half).to(device)
|
# init_image = pil_img_to_torch(img, half=half).to(device)
|
||||||
init_image = pillow_img_to_torch_image(img).to(get_device())
|
init_image = pillow_img_to_torch_image(img).to(get_device())
|
||||||
|
@ -3,7 +3,6 @@ from torch import nn
|
|||||||
|
|
||||||
from imaginairy.utils import get_device
|
from imaginairy.utils import get_device
|
||||||
|
|
||||||
|
|
||||||
SAMPLER_TYPE_OPTIONS = [
|
SAMPLER_TYPE_OPTIONS = [
|
||||||
"plms",
|
"plms",
|
||||||
"ddim",
|
"ddim",
|
||||||
|
Loading…
Reference in New Issue
Block a user