docs: cleanup

This commit is contained in:
Bryce 2023-05-04 20:36:49 -07:00 committed by Bryce Drennan
parent 832adf27bc
commit 750d4f7ea8
2 changed files with 2 additions and 35 deletions

View File

@ -399,6 +399,8 @@ docker run -it --gpus all -v $HOME/.cache/huggingface:/root/.cache/huggingface -
## ChangeLog ## ChangeLog
- feature: upgrade to [controlnet 1.1](https://github.com/lllyasviel/ControlNet-v1-1-nightly)
- fix: controlnet now works with all sd1.5 based models
- fix: raw control images are now properly loaded. fixes #296 - fix: raw control images are now properly loaded. fixes #296
- fix: filenames start numbers after latest image, even if some previous images were deleted - fix: filenames start numbers after latest image, even if some previous images were deleted

View File

@ -83,46 +83,11 @@ def _create_depth_map_raw(img):
return depth_pt return depth_pt
def create_normal_map_old(img):
import cv2
import numpy as np
import torch
depth = _create_depth_map_raw(img)
depth = depth[0]
depth_pt = depth.clone()
depth_pt -= torch.min(depth_pt)
depth_pt /= torch.max(depth_pt)
depth_pt = depth_pt.cpu().numpy()
bg_th = 0.1
a = np.pi * 2.0
depth_np = depth.cpu().float().numpy()
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
z = np.ones_like(x) * a
x[depth_pt < bg_th] = 0
y[depth_pt < bg_th] = 0
normal = np.stack([x, y, z], axis=2)
normal /= np.sum(normal**2.0, axis=2, keepdims=True) ** 0.5
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
normal_image = torch.from_numpy(normal_image[:, :, ::-1].copy()).float() / 255.0
normal_image = normal_image.permute(2, 0, 1)
normal_image = normal_image.unsqueeze(0)
# for use with Controlnet 1.1?
# normal_image = normal_image[:, [1, 0, 2], :, :]
return normal_image
def create_normal_map(img): def create_normal_map(img):
import torch import torch
from imaginairy_normal_map.model import create_normal_map_torch_img from imaginairy_normal_map.model import create_normal_map_torch_img
normal_img_t = create_normal_map_torch_img(img) normal_img_t = create_normal_map_torch_img(img)
# normal_img_t = normal_img_t[:, [1, 2, 0], :, :]
normal_img_t -= torch.min(normal_img_t) normal_img_t -= torch.min(normal_img_t)
normal_img_t /= torch.max(normal_img_t) normal_img_t /= torch.max(normal_img_t)