mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
docs: cleanup
This commit is contained in:
parent
832adf27bc
commit
750d4f7ea8
@ -399,6 +399,8 @@ docker run -it --gpus all -v $HOME/.cache/huggingface:/root/.cache/huggingface -
|
||||
|
||||
## ChangeLog
|
||||
|
||||
- feature: upgrade to [controlnet 1.1](https://github.com/lllyasviel/ControlNet-v1-1-nightly)
|
||||
- fix: controlnet now works with all sd1.5 based models
|
||||
- fix: raw control images are now properly loaded. fixes #296
|
||||
- fix: filenames start numbers after latest image, even if some previous images were deleted
|
||||
|
||||
|
@ -83,46 +83,11 @@ def _create_depth_map_raw(img):
|
||||
return depth_pt
|
||||
|
||||
|
||||
def create_normal_map_old(img):
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
depth = _create_depth_map_raw(img)
|
||||
depth = depth[0]
|
||||
|
||||
depth_pt = depth.clone()
|
||||
depth_pt -= torch.min(depth_pt)
|
||||
depth_pt /= torch.max(depth_pt)
|
||||
depth_pt = depth_pt.cpu().numpy()
|
||||
|
||||
bg_th = 0.1
|
||||
a = np.pi * 2.0
|
||||
depth_np = depth.cpu().float().numpy()
|
||||
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
|
||||
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
|
||||
z = np.ones_like(x) * a
|
||||
x[depth_pt < bg_th] = 0
|
||||
y[depth_pt < bg_th] = 0
|
||||
normal = np.stack([x, y, z], axis=2)
|
||||
normal /= np.sum(normal**2.0, axis=2, keepdims=True) ** 0.5
|
||||
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
||||
|
||||
normal_image = torch.from_numpy(normal_image[:, :, ::-1].copy()).float() / 255.0
|
||||
normal_image = normal_image.permute(2, 0, 1)
|
||||
normal_image = normal_image.unsqueeze(0)
|
||||
# for use with Controlnet 1.1?
|
||||
# normal_image = normal_image[:, [1, 0, 2], :, :]
|
||||
|
||||
return normal_image
|
||||
|
||||
|
||||
def create_normal_map(img):
|
||||
import torch
|
||||
from imaginairy_normal_map.model import create_normal_map_torch_img
|
||||
|
||||
normal_img_t = create_normal_map_torch_img(img)
|
||||
# normal_img_t = normal_img_t[:, [1, 2, 0], :, :]
|
||||
normal_img_t -= torch.min(normal_img_t)
|
||||
normal_img_t /= torch.max(normal_img_t)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user