imaginAIry/imaginairy/feather_tile.py

209 lines
6.8 KiB
Python
Raw Normal View History

# inspired by https://github.com/ProGamerGov/neural-dream/blob/master/neural_dream/dream_tile.py
# but with all the bugs fixed and lots of simplifications
# MIT License
import math
import torch
def mask_tile(tile, overlap, std_overlap, side="bottom"):
b, c, h, w = tile.shape
top_overlap, bottom_overlap, right_overlap, left_overlap = overlap
(
std_top_overlap,
std_bottom_overlap,
std_right_overlap,
std_left_overlap,
) = std_overlap
if "left" in side:
lin_mask_left = torch.linspace(0, 1, std_left_overlap, device=tile.device)
if left_overlap > std_left_overlap:
zeros_mask = torch.zeros(
left_overlap - std_left_overlap, device=tile.device
)
lin_mask_left = (
torch.cat([zeros_mask, lin_mask_left], 0)
.repeat(h, 1)
.repeat(c, 1, 1)
.unsqueeze(0)
)
if "right" in side:
lin_mask_right = (
torch.linspace(1, 0, right_overlap, device=tile.device)
.repeat(h, 1)
.repeat(c, 1, 1)
.unsqueeze(0)
)
if "top" in side:
lin_mask_top = torch.linspace(0, 1, std_top_overlap, device=tile.device)
if top_overlap > std_top_overlap:
zeros_mask = torch.zeros(top_overlap - std_top_overlap, device=tile.device)
lin_mask_top = torch.cat([zeros_mask, lin_mask_top], 0)
lin_mask_top = lin_mask_top.repeat(w, 1).rot90(3).repeat(c, 1, 1).unsqueeze(0)
if "bottom" in side:
lin_mask_bottom = (
torch.linspace(1, 0, std_bottom_overlap, device=tile.device)
.repeat(w, 1)
.rot90(3)
.repeat(c, 1, 1)
.unsqueeze(0)
)
base_mask = torch.ones_like(tile)
if "right" in side:
base_mask[:, :, :, w - right_overlap :] = (
base_mask[:, :, :, w - right_overlap :] * lin_mask_right
)
if "left" in side:
base_mask[:, :, :, :left_overlap] = (
base_mask[:, :, :, :left_overlap] * lin_mask_left
)
if "bottom" in side:
base_mask[:, :, h - bottom_overlap :, :] = (
base_mask[:, :, h - bottom_overlap :, :] * lin_mask_bottom
)
if "top" in side:
base_mask[:, :, :top_overlap, :] = (
base_mask[:, :, :top_overlap, :] * lin_mask_top
)
return tile * base_mask
def get_tile_coords(d, tile_dim, overlap=0):
move = int(math.ceil(round(tile_dim * (1 - overlap), 10)))
c, tile_start, coords = 1, 0, [0]
while tile_start + tile_dim < d:
tile_start = move * c
if tile_start + tile_dim >= d:
coords.append(d - tile_dim)
else:
coords.append(tile_start)
c += 1
return coords
def get_tiles(img, tile_coords, tile_size):
tile_list = []
for y in tile_coords[0]:
for x in tile_coords[1]:
tile = img[:, :, y : y + tile_size[0], x : x + tile_size[1]]
tile_list.append(tile)
return tile_list
def final_overlap(tile_coords, tile_size):
last_row, last_col = len(tile_coords[0]) - 1, len(tile_coords[1]) - 1
f_ovlp = [
(tile_coords[0][last_row - 1] + tile_size[0]) - (tile_coords[0][last_row]),
(tile_coords[1][last_col - 1] + tile_size[1]) - (tile_coords[1][last_col]),
]
return f_ovlp
def add_tiles(tiles, base_img, tile_coords, tile_size, overlap):
f_ovlp = final_overlap(tile_coords, tile_size)
h, w = tiles[0].size(2), tiles[0].size(3)
if f_ovlp[0] == h:
f_ovlp[0] = 0
if f_ovlp[1] == w:
f_ovlp[1] = 0
t = 0
(
column,
row,
) = (
0,
0,
)
for y in tile_coords[0]:
for x in tile_coords[1]:
mask_sides = ""
c_overlap = overlap.copy()
if row == 0:
mask_sides += "bottom"
elif 0 < row < len(tile_coords[0]) - 2:
mask_sides += "bottom,top"
elif row == len(tile_coords[0]) - 2:
mask_sides += "bottom,top"
elif row == len(tile_coords[0]) - 1:
mask_sides += "top"
if f_ovlp[0] > 0:
c_overlap[0] = f_ovlp[0] # Change top overlap
if column == 0:
mask_sides += ",right"
elif 0 < column < len(tile_coords[1]) - 2:
mask_sides += ",right,left"
elif column == len(tile_coords[1]) - 2:
mask_sides += ",right,left"
elif column == len(tile_coords[1]) - 1:
mask_sides += ",left"
if f_ovlp[1] > 0:
c_overlap[3] = f_ovlp[1] # Change left overlap
# print(f"mask_tile: tile.shape={tiles[t].shape}, overlap={c_overlap}, side={mask_sides} col={column}, row={row}")
tile = mask_tile(tiles[t], c_overlap, std_overlap=overlap, side=mask_sides)
# torch_img_to_pillow_img(tile).show()
base_img[:, :, y : y + tile_size[0], x : x + tile_size[1]] = (
base_img[:, :, y : y + tile_size[0], x : x + tile_size[1]] + tile
)
# torch_img_to_pillow_img(base_img).show()
t += 1
column += 1
row += 1
# if row >= 2:
# exit()
column = 0
return base_img
def tile_setup(tile_size, overlap_percent, base_size):
if not isinstance(tile_size, (tuple, list)):
tile_size = (tile_size, tile_size)
if not isinstance(overlap_percent, (tuple, list)):
overlap_percent = (overlap_percent, overlap_percent)
if min(tile_size) < 1:
raise ValueError("tile_size must be at least 1")
if max(overlap_percent) > 0.5:
raise ValueError("overlap_percent must not be greater than 0.5")
x_coords = get_tile_coords(base_size[1], tile_size[1], overlap_percent[1])
y_coords = get_tile_coords(base_size[0], tile_size[0], overlap_percent[0])
y_ovlp = int(math.floor(round(tile_size[0] * overlap_percent[0], 10)))
x_ovlp = int(math.floor(round(tile_size[1] * overlap_percent[1], 10)))
if len(x_coords) == 1:
x_ovlp = 0
if len(y_coords) == 1:
y_ovlp = 0
return (y_coords, x_coords), tile_size, [y_ovlp, y_ovlp, x_ovlp, x_ovlp]
def tile_image(img, tile_size, overlap_percent):
tile_coords, tile_size, _ = tile_setup(
tile_size, overlap_percent, (img.size(2), img.size(3))
)
return get_tiles(img, tile_coords, tile_size)
def rebuild_image(tiles, base_img, tile_size, overlap_percent):
if len(tiles) == 1:
return tiles[0]
base_img = torch.zeros_like(base_img)
tile_coords, tile_size, overlap = tile_setup(
tile_size, overlap_percent, (base_img.size(2), base_img.size(3))
)
return add_tiles(tiles, base_img, tile_coords, tile_size, overlap)