2022-12-20 09:43:04 +00:00
|
|
|
"""Utils for monoDepth."""
|
|
|
|
import re
|
|
|
|
import sys
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from imaginairy.modules.midas.api import load_midas_transform
|
|
|
|
|
|
|
|
|
|
|
|
class AddMiDaS:
|
|
|
|
def __init__(self, model_type="dpt_hybrid"):
|
|
|
|
self.transform = load_midas_transform(model_type)
|
|
|
|
|
|
|
|
def pt2np(self, x):
|
|
|
|
x = ((x + 1.0) * 0.5).detach().cpu().numpy()
|
|
|
|
return x
|
|
|
|
|
|
|
|
def np2pt(self, x):
|
|
|
|
x = torch.from_numpy(x) * 2 - 1.0
|
|
|
|
return x
|
|
|
|
|
|
|
|
def __call__(self, img):
|
|
|
|
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
|
|
|
img = self.pt2np(img)
|
|
|
|
img = self.transform({"image": img})["image"]
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
def read_pfm(path):
|
|
|
|
"""
|
|
|
|
Read pfm file.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
path (str): path to file
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
tuple: (data, scale)
|
|
|
|
"""
|
|
|
|
with open(path, "rb") as file:
|
|
|
|
|
|
|
|
color = None
|
|
|
|
width = None
|
|
|
|
height = None
|
|
|
|
scale = None
|
|
|
|
endian = None
|
|
|
|
|
|
|
|
header = file.readline().rstrip()
|
|
|
|
if header.decode("ascii") == "PF":
|
|
|
|
color = True
|
|
|
|
elif header.decode("ascii") == "Pf":
|
|
|
|
color = False
|
|
|
|
else:
|
|
|
|
raise Exception("Not a PFM file: " + path)
|
|
|
|
|
|
|
|
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
|
|
|
if dim_match:
|
|
|
|
width, height = list(map(int, dim_match.groups()))
|
|
|
|
else:
|
|
|
|
raise Exception("Malformed PFM header.")
|
|
|
|
|
|
|
|
scale = float(file.readline().decode("ascii").rstrip())
|
|
|
|
if scale < 0:
|
|
|
|
# little-endian
|
|
|
|
endian = "<"
|
|
|
|
scale = -scale
|
|
|
|
else:
|
|
|
|
# big-endian
|
|
|
|
endian = ">"
|
|
|
|
|
|
|
|
data = np.fromfile(file, endian + "f")
|
|
|
|
shape = (height, width, 3) if color else (height, width)
|
|
|
|
|
|
|
|
data = np.reshape(data, shape)
|
|
|
|
data = np.flipud(data)
|
|
|
|
|
|
|
|
return data, scale
|
|
|
|
|
|
|
|
|
|
|
|
def write_pfm(path, image, scale=1):
|
|
|
|
"""
|
|
|
|
Write pfm file.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
path (str): pathto file
|
|
|
|
image (array): data
|
|
|
|
scale (int, optional): Scale. Defaults to 1.
|
|
|
|
"""
|
|
|
|
|
|
|
|
with open(path, "wb") as file:
|
|
|
|
color = None
|
|
|
|
|
|
|
|
if image.dtype.name != "float32":
|
|
|
|
raise Exception("Image dtype must be float32.")
|
|
|
|
|
|
|
|
image = np.flipud(image)
|
|
|
|
|
|
|
|
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
|
|
|
color = True
|
|
|
|
elif (
|
|
|
|
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
|
|
|
): # greyscale
|
|
|
|
color = False
|
|
|
|
else:
|
|
|
|
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
|
|
|
|
2023-01-02 04:14:22 +00:00
|
|
|
file.write("PF\n" if color else b"Pf\n")
|
|
|
|
file.write(b"%d %d\n" % (image.shape[1], image.shape[0]))
|
2022-12-20 09:43:04 +00:00
|
|
|
|
|
|
|
endian = image.dtype.byteorder
|
|
|
|
|
|
|
|
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
|
|
|
scale = -scale
|
|
|
|
|
2023-01-02 04:14:22 +00:00
|
|
|
file.write(b"%f\n" % scale)
|
2022-12-20 09:43:04 +00:00
|
|
|
|
|
|
|
image.tofile(file)
|
|
|
|
|
|
|
|
|
|
|
|
def read_image(path):
|
|
|
|
"""
|
|
|
|
Read image and output RGB image (0-1).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
path (str): path to file
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
array: RGB image (0-1)
|
|
|
|
"""
|
|
|
|
img = cv2.imread(path)
|
|
|
|
|
|
|
|
if img.ndim == 2:
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
|
|
|
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
|
|
|
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
def resize_image(img):
|
|
|
|
"""
|
|
|
|
Resize image and make it fit for network.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img (array): image
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
tensor: data ready for network
|
|
|
|
"""
|
|
|
|
height_orig = img.shape[0]
|
|
|
|
width_orig = img.shape[1]
|
|
|
|
|
|
|
|
if width_orig > height_orig:
|
|
|
|
scale = width_orig / 384
|
|
|
|
else:
|
|
|
|
scale = height_orig / 384
|
|
|
|
|
|
|
|
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
|
|
|
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
|
|
|
|
|
|
|
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
|
|
|
|
|
|
|
img_resized = (
|
|
|
|
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
|
|
|
)
|
|
|
|
img_resized = img_resized.unsqueeze(0)
|
|
|
|
|
|
|
|
return img_resized
|
|
|
|
|
|
|
|
|
|
|
|
def resize_depth(depth, width, height):
|
|
|
|
"""
|
|
|
|
Resize depth map and bring to CPU (numpy).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
depth (tensor): depth
|
|
|
|
width (int): image width
|
|
|
|
height (int): image height
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
array: processed depth
|
|
|
|
"""
|
|
|
|
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
|
|
|
|
|
|
|
depth_resized = cv2.resize(
|
|
|
|
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
|
|
|
)
|
|
|
|
|
|
|
|
return depth_resized
|
|
|
|
|
|
|
|
|
|
|
|
def write_depth(path, depth, bits=1):
|
|
|
|
"""
|
|
|
|
Write depth map to pfm and png file.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
path (str): filepath without extension
|
|
|
|
depth (array): depth
|
|
|
|
"""
|
|
|
|
write_pfm(path + ".pfm", depth.astype(np.float32))
|
|
|
|
|
|
|
|
depth_min = depth.min()
|
|
|
|
depth_max = depth.max()
|
|
|
|
|
|
|
|
max_val = (2 ** (8 * bits)) - 1
|
|
|
|
|
|
|
|
if depth_max - depth_min > np.finfo("float").eps:
|
|
|
|
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
|
|
|
else:
|
|
|
|
out = np.zeros(depth.shape, dtype=depth.type)
|
|
|
|
|
|
|
|
if bits == 1:
|
|
|
|
cv2.imwrite(path + ".png", out.astype("uint8"))
|
|
|
|
elif bits == 2:
|
|
|
|
cv2.imwrite(path + ".png", out.astype("uint16"))
|