imaginAIry/imaginairy/schema.py

124 lines
3.8 KiB
Python
Raw Normal View History

import hashlib
import json
import random
from datetime import datetime, timezone
import numpy
from PIL.Image import Exif
from imaginairy.utils import get_device, get_device_name
class WeightedPrompt:
def __init__(self, text, weight=1):
self.text = text
self.weight = weight
def __str__(self):
return f"{self.weight}*({self.text})"
class ImaginePrompt:
def __init__(
self,
prompt=None,
prompt_strength=7.5,
init_image=None,
init_image_strength=0.3,
seed=None,
steps=50,
height=512,
width=512,
upscale=False,
fix_faces=False,
sampler_type="PLMS",
):
prompt = prompt if prompt is not None else "a scenic landscape"
if isinstance(prompt, str):
self.prompts = [WeightedPrompt(prompt, 1)]
else:
self.prompts = prompt
self.prompts.sort(key=lambda p: p.weight, reverse=True)
self.prompt_strength = prompt_strength
self.init_image = init_image
self.init_image_strength = init_image_strength
self.seed = random.randint(1, 1_000_000_000) if seed is None else seed
self.steps = steps
self.height = height
self.width = width
self.upscale = upscale
self.fix_faces = fix_faces
self.sampler_type = sampler_type
@property
def prompt_text(self):
if len(self.prompts) == 1:
return self.prompts[0].text
return "|".join(str(p) for p in self.prompts)
def prompt_description(self):
return (
f'🖼 : "{self.prompt_text}" {self.width}x{self.height}px '
f"seed:{self.seed} prompt-strength:{self.prompt_strength} steps:{self.steps} sampler-type:{self.sampler_type}"
)
def as_dict(self):
prompts = [(p.weight, p.text) for p in self.prompts]
return {
"software": "imaginairy",
"prompts": prompts,
"prompt_strength": self.prompt_strength,
"init_image": self.init_image,
"init_image_strength": self.init_image_strength,
"seed": self.seed,
"steps": self.steps,
"height": self.height,
"width": self.width,
"upscale": self.upscale,
"fix_faces": self.fix_faces,
"sampler_type": self.sampler_type,
}
class ExifCodes:
"""https://www.awaresystems.be/imaging/tiff/tifftags/baseline.html"""
ImageDescription = 0x010E
Software = 0x0131
DateTime = 0x0132
HostComputer = 0x013C
UserComment = 0x9286
class ImagineResult:
def __init__(self, img, prompt: ImaginePrompt):
self.img = img
self.prompt = prompt
self.created_at = datetime.utcnow().replace(tzinfo=timezone.utc)
self.torch_backend = get_device()
self.hardware_name = get_device_name(get_device())
def cv2_img(self):
open_cv_image = numpy.array(self.img)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
return open_cv_image
# return cv2.cvtColor(numpy.array(self.img), cv2.COLOR_RGB2BGR)
def md5(self):
return hashlib.md5(self.img.tobytes()).hexdigest()
def metadata_dict(self):
return {
"prompt": self.prompt.as_dict(),
}
def save(self, save_path):
exif = Exif()
exif[ExifCodes.ImageDescription] = self.prompt.prompt_description()
exif[ExifCodes.UserComment] = json.dumps(self.metadata_dict())
# help future web scrapes not ingest AI generated art
exif[ExifCodes.Software] = "Imaginairy / Stable Diffusion v1.4"
exif[ExifCodes.DateTime] = self.created_at.isoformat(sep=" ")[:19]
exif[ExifCodes.HostComputer] = f"{self.torch_backend}:{self.hardware_name}"
self.img.save(save_path, exif=exif)