2022-09-17 22:49:38 +00:00
|
|
|
import hashlib
|
|
|
|
|
2022-09-18 00:02:45 +00:00
|
|
|
import torch
|
2022-09-17 22:49:38 +00:00
|
|
|
from PIL import Image
|
|
|
|
from pytorch_lightning import seed_everything
|
2022-09-18 00:02:45 +00:00
|
|
|
from torchvision import transforms
|
2022-09-17 22:49:38 +00:00
|
|
|
|
2022-09-18 00:02:45 +00:00
|
|
|
from imaginairy.enhancers.clip_masking import get_img_mask
|
2022-09-17 22:49:38 +00:00
|
|
|
from imaginairy.enhancers.face_restoration_codeformer import enhance_faces
|
|
|
|
from imaginairy.utils import get_device
|
|
|
|
from tests import TESTS_FOLDER
|
|
|
|
|
|
|
|
|
|
|
|
def test_fix_faces():
|
|
|
|
img = Image.open(f"{TESTS_FOLDER}/data/distorted_face.png")
|
|
|
|
seed_everything(1)
|
|
|
|
img = enhance_faces(img)
|
|
|
|
img.save(f"{TESTS_FOLDER}/test_output/fixed_face.png")
|
|
|
|
if "mps" in get_device():
|
|
|
|
assert img_hash(img) == "a75991307eda675a26eeb7073f828e93"
|
|
|
|
else:
|
|
|
|
assert img_hash(img) == "5aa847a1464de75b158658a35800b6bf"
|
|
|
|
|
|
|
|
|
|
|
|
def img_hash(img):
|
|
|
|
return hashlib.md5(img.tobytes()).hexdigest()
|
2022-09-18 00:02:45 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_clip_masking():
|
|
|
|
img = Image.open(f"{TESTS_FOLDER}/data/girl_with_a_pearl_earring.jpg")
|
|
|
|
preds = get_img_mask(img, ['background'])
|
|
|
|
mask = transforms.ToPILImage()(torch.sigmoid(preds[0][0]))
|
|
|
|
mask.save(f"{TESTS_FOLDER}/test_output/earring_mask.png")
|