imaginAIry/imaginairy/train.py

526 lines
18 KiB
Python
Raw Normal View History

import datetime
import logging
import os
import signal
import time
from functools import partial
import numpy as np
import pytorch_lightning as pl
import torch
import torchvision
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import Callback, LearningRateMonitor
from pytorch_lightning.strategies import DDPStrategy
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.utilities import rank_zero_info
from pytorch_lightning.utilities.distributed import rank_zero_only
from torch.utils.data import DataLoader, Dataset
from imaginairy import config
from imaginairy.model_manager import get_diffusion_model
from imaginairy.training_tools.single_concept import SingleConceptDataset
from imaginairy.utils import get_device, instantiate_from_config
mod_logger = logging.getLogger(__name__)
referenced_by_string = [LearningRateMonitor]
class WrappedDataset(Dataset):
"""Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset."""
def __init__(self, dataset):
self.data = dataset
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def worker_init_fn(_):
worker_info = torch.utils.data.get_worker_info()
dataset = worker_info.dataset
worker_id = worker_info.id
if isinstance(dataset, SingleConceptDataset):
# split_size = dataset.num_records // worker_info.num_workers
# reset num_records to the true number to retain reliable length information
# dataset.sample_ids = dataset.valid_ids[
# worker_id * split_size : (worker_id + 1) * split_size
# ]
current_id = np.random.choice(len(np.random.get_state()[1]), 1)
return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
return np.random.seed(np.random.get_state()[1][0] + worker_id)
class DataModuleFromConfig(pl.LightningDataModule):
def __init__(
self,
batch_size,
train=None,
validation=None,
test=None,
predict=None,
wrap=False,
num_workers=None,
shuffle_test_loader=False,
use_worker_init_fn=False,
shuffle_val_dataloader=False,
num_val_workers=0,
):
super().__init__()
self.batch_size = batch_size
self.dataset_configs = {}
self.num_workers = num_workers if num_workers is not None else batch_size * 2
if num_val_workers is None:
self.num_val_workers = self.num_workers
else:
self.num_val_workers = num_val_workers
self.use_worker_init_fn = use_worker_init_fn
if train is not None:
self.dataset_configs["train"] = train
self.train_dataloader = self._train_dataloader
if validation is not None:
self.dataset_configs["validation"] = validation
self.val_dataloader = partial(
self._val_dataloader, shuffle=shuffle_val_dataloader
)
if test is not None:
self.dataset_configs["test"] = test
self.test_dataloader = partial(
self._test_dataloader, shuffle=shuffle_test_loader
)
if predict is not None:
self.dataset_configs["predict"] = predict
self.predict_dataloader = self._predict_dataloader
self.wrap = wrap
self.datasets = None
def prepare_data(self):
for data_cfg in self.dataset_configs.values():
instantiate_from_config(data_cfg)
def setup(self, stage=None):
self.datasets = {
k: instantiate_from_config(c) for k, c in self.dataset_configs.items()
}
if self.wrap:
self.datasets = {k: WrappedDataset(v) for k, v in self.datasets.items()}
def _train_dataloader(self):
is_iterable_dataset = isinstance(self.datasets["train"], SingleConceptDataset)
if is_iterable_dataset or self.use_worker_init_fn:
pass
else:
pass
return DataLoader(
self.datasets["train"],
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True,
worker_init_fn=worker_init_fn,
)
def _val_dataloader(self, shuffle=False):
if (
isinstance(self.datasets["validation"], SingleConceptDataset)
or self.use_worker_init_fn
):
init_fn = worker_init_fn
else:
init_fn = None
return DataLoader(
self.datasets["validation"],
batch_size=self.batch_size,
num_workers=self.num_val_workers,
worker_init_fn=init_fn,
shuffle=shuffle,
)
def _test_dataloader(self, shuffle=False):
is_iterable_dataset = isinstance(self.datasets["train"], SingleConceptDataset)
if is_iterable_dataset or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
is_iterable_dataset = False
# do not shuffle dataloader for iterable dataset
shuffle = shuffle and (not is_iterable_dataset)
return DataLoader(
self.datasets["test"],
batch_size=self.batch_size,
num_workers=self.num_workers,
worker_init_fn=init_fn,
shuffle=shuffle,
)
def _predict_dataloader(self, shuffle=False):
if (
isinstance(self.datasets["predict"], SingleConceptDataset)
or self.use_worker_init_fn
):
init_fn = worker_init_fn
else:
init_fn = None
return DataLoader(
self.datasets["predict"],
batch_size=self.batch_size,
num_workers=self.num_workers,
worker_init_fn=init_fn,
)
class SetupCallback(Callback):
def __init__(
self,
resume,
now,
logdir,
ckptdir,
cfgdir,
):
super().__init__()
self.resume = resume
self.now = now
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
def on_keyboard_interrupt(self, trainer, pl_module):
if trainer.global_rank == 0:
mod_logger.info("Stopping execution and saving final checkpoint.")
ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
trainer.save_checkpoint(ckpt_path)
def on_fit_start(self, trainer, pl_module):
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
else:
# ModelCheckpoint callback created log directory --- remove it
if not self.resume and os.path.exists(self.logdir):
dst, name = os.path.split(self.logdir)
dst = os.path.join(dst, "child_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
try:
os.rename(self.logdir, dst)
except FileNotFoundError:
pass
class ImageLogger(Callback):
def __init__(
self,
batch_frequency,
max_images,
clamp=True,
increase_log_steps=True,
rescale=True,
disabled=False,
log_on_batch_idx=False,
log_first_step=False,
log_images_kwargs=None,
log_all_val=False,
concept_label=None,
):
super().__init__()
self.rescale = rescale
self.batch_freq = batch_frequency
self.max_images = max_images
self.logger_log_images = {}
self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)]
if not increase_log_steps:
self.log_steps = [self.batch_freq]
self.clamp = clamp
self.disabled = disabled
self.log_on_batch_idx = log_on_batch_idx
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
self.log_first_step = log_first_step
self.log_all_val = log_all_val
self.concept_label = concept_label
@rank_zero_only
def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx):
root = os.path.join(save_dir, "logs", "images", split)
for k in images:
grid = torchvision.utils.make_grid(images[k], nrow=4)
if self.rescale:
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
grid = grid.numpy()
grid = (grid * 255).astype(np.uint8)
filename = (
f"{k}_gs-{global_step:06}_e-{current_epoch:06}_b-{batch_idx:06}.png"
)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
Image.fromarray(grid).save(path)
def log_img(self, pl_module, batch, batch_idx, split="train"):
# always generate the concept label
batch["txt"][0] = self.concept_label
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
if self.log_all_val and split == "val":
should_log = True
else:
should_log = self.check_frequency(check_idx)
if (
should_log
and (batch_idx % self.batch_freq == 0)
and hasattr(pl_module, "log_images")
and callable(pl_module.log_images)
and self.max_images > 0
):
logger = type(pl_module.logger)
is_train = pl_module.training
if is_train:
pl_module.eval()
with torch.no_grad():
images = pl_module.log_images(
batch, split=split, **self.log_images_kwargs
)
for k in images:
N = min(images[k].shape[0], self.max_images)
images[k] = images[k][:N]
if isinstance(images[k], torch.Tensor):
images[k] = images[k].detach().cpu()
if self.clamp:
images[k] = torch.clamp(images[k], -1.0, 1.0)
self.log_local(
pl_module.logger.save_dir,
split,
images,
pl_module.global_step,
pl_module.current_epoch,
batch_idx,
)
logger_log_images = self.logger_log_images.get(
logger, lambda *args, **kwargs: None
)
logger_log_images(pl_module, images, pl_module.global_step, split)
if is_train:
pl_module.train()
def check_frequency(self, check_idx):
if (check_idx % self.batch_freq) == 0 and (
check_idx > 0 or self.log_first_step
):
return True
return False
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
self.log_img(pl_module, batch, batch_idx, split="train")
def on_validation_batch_end(
self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx
):
if not self.disabled and pl_module.global_step > 0:
self.log_img(pl_module, batch, batch_idx, split="val")
if hasattr(pl_module, "calibrate_grad_norm"):
if (
pl_module.calibrate_grad_norm and batch_idx % 25 == 0
) and batch_idx > 0:
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
class CUDACallback(Callback):
# see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
def on_train_epoch_start(self, trainer, pl_module):
# Reset the memory use counter
if "cuda" in get_device():
torch.cuda.reset_peak_memory_stats(trainer.strategy.root_device.index)
torch.cuda.synchronize(trainer.strategy.root_device.index)
self.start_time = time.time() # noqa
def on_train_epoch_end(self, trainer, pl_module): # noqa
if "cuda" in get_device():
torch.cuda.synchronize(trainer.strategy.root_device.index)
max_memory = (
torch.cuda.max_memory_allocated(trainer.strategy.root_device.index)
/ 2**20
)
epoch_time = time.time() - self.start_time
try:
max_memory = trainer.training_type_plugin.reduce(max_memory)
epoch_time = trainer.training_type_plugin.reduce(epoch_time)
rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
except AttributeError:
pass
def train_diffusion_model(
concept_label,
concept_images_dir,
class_label,
class_images_dir,
weights_location=config.DEFAULT_MODEL,
logdir="logs",
learning_rate=1e-6,
accumulate_grad_batches=32,
resume=None,
):
"""
Train a diffusion model on a single concept.
accumulate_grad_batches used to simulate a bigger batch size - https://arxiv.org/pdf/1711.00489.pdf
"""
batch_size = 1
seed = 23
num_workers = 1
num_val_workers = 0
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
logdir = os.path.join(logdir, now)
ckpt_output_dir = os.path.join(logdir, "checkpoints")
cfg_output_dir = os.path.join(logdir, "configs")
seed_everything(seed)
model = get_diffusion_model( # noqa
weights_location=weights_location, half_mode=False, for_training=True
)._model
model.learning_rate = learning_rate * accumulate_grad_batches * batch_size
# add callback which sets up log directory
default_callbacks_cfg = {
"setup_callback": {
"target": "imaginairy.train.SetupCallback",
"params": {
"resume": False,
"now": now,
"logdir": logdir,
"ckptdir": ckpt_output_dir,
"cfgdir": cfg_output_dir,
},
},
"image_logger": {
"target": "imaginairy.train.ImageLogger",
"params": {
"batch_frequency": 10,
"max_images": 1,
"clamp": True,
"increase_log_steps": False,
"log_first_step": True,
"log_all_val": True,
"concept_label": concept_label,
"log_images_kwargs": {
"use_ema_scope": True,
"inpaint": False,
"plot_progressive_rows": False,
"plot_diffusion_rows": False,
"N": 1,
"unconditional_guidance_scale:": 7.5,
"unconditional_guidance_label": [""],
"ddim_steps": 20,
},
},
},
"learning_rate_logger": {
"target": "imaginairy.train.LearningRateMonitor",
"params": {
"logging_interval": "step",
# "log_momentum": True
},
},
"cuda_callback": {"target": "imaginairy.train.CUDACallback"},
}
default_modelckpt_cfg = {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": ckpt_output_dir,
"filename": "{epoch:06}",
"verbose": True,
"save_last": True,
"every_n_train_steps": 50,
"save_top_k": -1,
"monitor": None,
},
}
modelckpt_cfg = OmegaConf.create(default_modelckpt_cfg)
default_callbacks_cfg.update({"checkpoint_callback": modelckpt_cfg})
callbacks_cfg = OmegaConf.create(default_callbacks_cfg)
dataset_config = {
"concept_label": concept_label,
"concept_images_dir": concept_images_dir,
"class_label": class_label,
"class_images_dir": class_images_dir,
"image_transforms": [
{
"target": "torchvision.transforms.Resize",
"params": {"size": 512, "interpolation": 3},
},
{"target": "torchvision.transforms.RandomCrop", "params": {"size": 512}},
],
}
data_module_config = {
"batch_size": batch_size,
"num_workers": num_workers,
"num_val_workers": num_val_workers,
"train": {
"target": "imaginairy.training_tools.single_concept.SingleConceptDataset",
"params": dataset_config,
},
}
trainer = Trainer(
benchmark=True,
num_sanity_val_steps=0,
accumulate_grad_batches=accumulate_grad_batches,
strategy=DDPStrategy(),
callbacks=[
instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg # noqa
],
gpus=1,
default_root_dir=".",
)
trainer.logdir = logdir
data = DataModuleFromConfig(**data_module_config)
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
# calling these ourselves should not be necessary but it is.
# lightning still takes care of proper multiprocessing though
data.prepare_data()
data.setup()
def melk(*args, **kwargs):
if trainer.global_rank == 0:
mod_logger.info("Summoning checkpoint.")
ckpt_path = os.path.join(ckpt_output_dir, "last.ckpt")
trainer.save_checkpoint(ckpt_path)
signal.signal(signal.SIGUSR1, melk)
try:
try:
trainer.fit(model, data)
except Exception:
melk()
raise
finally:
mod_logger.info(trainer.profiler.summary())