2
0
mirror of https://github.com/fork-maintainers/iceraven-browser synced 2024-11-15 18:12:54 +00:00
iceraven-browser/taskcluster/docker/visual-metrics/similarity.py
Gregory Mierzwinski 88baeceba5
Bug 1636589 - Update visual-metrics, and geckodriver archive path. (#10558)
* Fix browsertime failures.

* Run a browsertime test.

* Undo browsertime test.
2020-05-11 17:19:55 +02:00

252 lines
8.3 KiB
Python

#!/usr/bin/env python3
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
import cv2
import json
import numpy as np
import os
import pathlib
import shutil
import socket
import tarfile
import tempfile
import urllib
from functools import wraps
from matplotlib import pyplot as plt
from scipy.stats import spearmanr
def open_data(file):
return cv2.VideoCapture(str(file))
def socket_timeout(value=120):
"""Decorator for socket timeouts."""
def _socket_timeout(func):
@wraps(func)
def __socket_timeout(*args, **kw):
old = socket.getdefaulttimeout()
socket.setdefaulttimeout(value)
try:
return func(*args, **kw)
finally:
socket.setdefaulttimeout(old)
return __socket_timeout
return _socket_timeout
@socket_timeout(120)
def query_activedata(query_json, log):
"""Used to run queries on active data."""
active_data_url = "http://activedata.allizom.org/query"
req = urllib.request.Request(active_data_url)
req.add_header("Content-Type", "application/json")
jsondata = json.dumps(query_json)
jsondataasbytes = jsondata.encode("utf-8")
req.add_header("Content-Length", len(jsondataasbytes))
log.info("Querying Active-data...")
response = urllib.request.urlopen(req, jsondataasbytes)
log.info("Status: %s" % {str(response.getcode())})
data = json.loads(response.read().decode("utf8").replace("'", '"'))["data"]
return data
@socket_timeout(120)
def download(url, loc, log):
"""Downloads from a url (with a timeout)."""
log.info("Downloading %s" % url)
try:
urllib.request.urlretrieve(url, loc)
except Exception as e:
log.info(str(e))
return False
return True
def get_frames(video):
"""Gets all frames from a video into a list."""
allframes = []
while video.isOpened():
ret, frame = video.read()
if ret:
# Convert to gray to simplify the process
allframes.append(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY))
else:
video.release()
break
return allframes
def calculate_similarity(jobs_json, fetch_dir, output, log):
"""Calculates the similarity score against the last live site test.
The technique works as follows:
1. Get the last live site test.
2. For each 15x15 video pairings, build a cross-correlation matrix:
1. Get each of the videos and calculate their histograms
across the full videos.
2. Calculate the correlation coefficient between these two.
3. Average the cross-correlation matrix to obtain the score.
The 2D similarity score is the same, except that it builds a histogram
from the final frame instead of the full video.
For finding the last live site, we use active-data. We search for
PGO android builds since this metric is only available for live sites that
run on android in mozilla-cental. Given that live sites currently
run on cron 3 days a week, then it's also reasonable to look for tasks
which have occurred before today and within the last two weeks at most.
But this is a TODO for future work, since we need to determine a better
way of selecting the last task (HG push logs?) - there's a lot that factors
into these choices, so it might require a multi-faceted approach.
Args:
jobs_json: The jobs JSON that holds extra information.
fetch_dir: The fetch directory that holds the new videos.
log: The logger.
Returns:
Two similarity scores (3D, 2D) as a float, or None if there was an issue.
"""
app = jobs_json["application"]["name"]
test = jobs_json["jobs"][0]["test_name"]
splittest = test.split("-cold")
cold = ""
if len(splittest) > 0:
cold = ".*cold"
test = splittest[0]
# PGO vs. OPT shouldn't matter much, but we restrict it to PGO builds here
# for android, and desktop tests have the opt/pgo restriction removed
plat = os.getenv("TC_PLATFORM", "")
if "android" in plat:
plat = plat.replace("/opt", "/pgo")
else:
plat = plat.replace("/opt", "").replace("/pgo", "")
ad_query = {
"from": "task",
"limit": 1000,
"where": {
"and": [
{
"regexp": {
"run.name": ".*%s.*browsertime.*-live.*%s%s.*%s.*"
% (plat, app, cold, test)
}
},
{"not": {"prefix": {"run.name": "test-vismet"}}},
{"in": {"repo.branch.name": ["mozilla-central"]}},
{"gte": {"action.start_time": {"date": "today-week-week"}}},
{"lt": {"action.start_time": {"date": "today-1day"}}},
{"in": {"task.run.state": ["completed"]}},
]
},
"select": ["action.start_time", "run.name", "task.artifacts"],
}
# Run the AD query and find the browsertime videos to download
failed = False
try:
data = query_activedata(ad_query, log)
except Exception as e:
log.info(str(e))
failed = True
if failed or not data:
log.info("Couldn't get activedata data")
return None
log.info("Found %s datums" % str(len(data["action.start_time"])))
maxind = np.argmax([float(t) for t in data["action.start_time"]])
artifacts = data["task.artifacts"][maxind]
btime_artifact = None
for art in artifacts:
if "browsertime-results" in art["name"]:
btime_artifact = art["url"]
break
if not btime_artifact:
log.info("Can't find an older live site")
return None
# Download the browsertime videos and untar them
tmpdir = tempfile.mkdtemp()
loc = os.path.join(tmpdir, "tmpfile.tgz")
if not download(btime_artifact, loc, log):
return None
tmploc = tempfile.mkdtemp()
try:
with tarfile.open(str(loc)) as tar:
tar.extractall(path=tmploc)
except Exception:
log.info(
"Could not read/extract old browsertime results archive",
path=loc,
exc_info=True,
)
return None
# Find all the videos
oldmp4s = [str(f) for f in pathlib.Path(tmploc).rglob("*.mp4")]
log.info("Found %s old videos" % str(len(oldmp4s)))
newmp4s = [str(f) for f in pathlib.Path(fetch_dir).rglob("*.mp4")]
log.info("Found %s new videos" % str(len(newmp4s)))
# Finally, calculate the 2D/3D score
nhists = []
nhists2d = []
total_vids = min(len(oldmp4s), len(newmp4s))
xcorr = np.zeros((total_vids, total_vids))
xcorr2d = np.zeros((total_vids, total_vids))
for i in range(total_vids):
datao = np.asarray(get_frames(open_data(oldmp4s[i])))
histo, _, _ = plt.hist(datao.flatten(), bins=255)
histo2d, _, _ = plt.hist(datao[-1, :, :].flatten(), bins=255)
for j in range(total_vids):
if i == 0:
# Only calculate the histograms once; it takes time
datan = np.asarray(get_frames(open_data(newmp4s[j])))
histn, _, _ = plt.hist(datan.flatten(), bins=255)
histn2d, _, _ = plt.hist(datan[-1, :, :].flatten(), bins=255)
nhists.append(histn)
nhists2d.append(histn2d)
else:
histn = nhists[j]
histn2d = nhists2d[j]
rho, _ = spearmanr(histn, histo)
rho2d, _ = spearmanr(histn2d, histo2d)
xcorr[i, j] = rho
xcorr2d[i, j] = rho2d
similarity = np.mean(xcorr)
similarity2d = np.mean(xcorr2d)
log.info("Average 3D similarity: %s" % str(np.round(similarity, 5)))
log.info("Average 2D similarity: %s" % str(np.round(similarity2d, 5)))
if similarity < 0.5:
# For really low correlations, output the worst video pairing
# so that we can visually see what the issue was
minind = np.unravel_index(np.argmin(xcorr, axis=None), xcorr.shape)
oldvid = oldmp4s[minind[0]]
shutil.copyfile(oldvid, str(pathlib.Path(output, "old_video.mp4")))
newvid = newmp4s[minind[1]]
shutil.copyfile(newvid, str(pathlib.Path(output, "new_video.mp4")))
return np.round(similarity, 5), np.round(similarity2d, 5)