mirror of
https://github.com/fork-maintainers/iceraven-browser
synced 2024-11-15 18:12:54 +00:00
361 lines
12 KiB
Python
361 lines
12 KiB
Python
#!/usr/bin/env python3
|
|
#
|
|
# This Source Code Form is subject to the terms of the Mozilla Public
|
|
# License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
import cv2
|
|
import json
|
|
import numpy as np
|
|
import os
|
|
import pathlib
|
|
import shutil
|
|
import socket
|
|
import structlog
|
|
import tarfile
|
|
import tempfile
|
|
import urllib
|
|
|
|
from functools import wraps
|
|
from matplotlib import pyplot as plt
|
|
from scipy.stats import spearmanr
|
|
|
|
|
|
log = None
|
|
|
|
|
|
# We add the `and` conditions to it later
|
|
base_ad_query = {
|
|
"from": "task",
|
|
"limit": 1000,
|
|
"where": {
|
|
"and": []
|
|
},
|
|
"select": [
|
|
"action.start_time",
|
|
"run.name",
|
|
"task.artifacts",
|
|
"task.group.id",
|
|
"task.id"
|
|
],
|
|
}
|
|
|
|
|
|
def socket_timeout(value=120):
|
|
"""Decorator for socket timeouts."""
|
|
def _socket_timeout(func):
|
|
@wraps(func)
|
|
def __socket_timeout(*args, **kw):
|
|
old = socket.getdefaulttimeout()
|
|
socket.setdefaulttimeout(value)
|
|
try:
|
|
return func(*args, **kw)
|
|
finally:
|
|
socket.setdefaulttimeout(old)
|
|
return __socket_timeout
|
|
return _socket_timeout
|
|
|
|
|
|
def _open_data(file):
|
|
return cv2.VideoCapture(str(file))
|
|
|
|
|
|
@socket_timeout(120)
|
|
def _query_activedata(query_json):
|
|
"""Used to run queries on active data."""
|
|
active_data_url = "http://activedata.allizom.org/query"
|
|
|
|
req = urllib.request.Request(active_data_url)
|
|
req.add_header("Content-Type", "application/json")
|
|
jsondata = json.dumps(query_json)
|
|
|
|
jsondataasbytes = jsondata.encode("utf-8")
|
|
req.add_header("Content-Length", len(jsondataasbytes))
|
|
|
|
log.info("Querying Active-data...")
|
|
response = urllib.request.urlopen(req, jsondataasbytes)
|
|
log.info("Status: %s" % {str(response.getcode())})
|
|
|
|
data = json.loads(response.read().decode("utf8").replace("'", '"'))["data"]
|
|
return data
|
|
|
|
|
|
@socket_timeout(120)
|
|
def _download(url, loc):
|
|
"""Downloads from a url (with a timeout)."""
|
|
log.info("Downloading %s" % url)
|
|
try:
|
|
urllib.request.urlretrieve(url, loc)
|
|
except Exception as e:
|
|
log.info(str(e))
|
|
return False
|
|
return True
|
|
|
|
|
|
def _get_frames(video):
|
|
"""Gets all frames from a video into a list."""
|
|
allframes = []
|
|
while video.isOpened():
|
|
ret, frame = video.read()
|
|
if ret:
|
|
# Convert to gray to simplify the process
|
|
allframes.append(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY))
|
|
else:
|
|
video.release()
|
|
break
|
|
return allframes
|
|
|
|
|
|
def _get_browsertime_results(query):
|
|
"""Used to run an AD query and extract the browsertime results if they exist."""
|
|
failed = False
|
|
try:
|
|
data = _query_activedata(query)
|
|
except Exception as e:
|
|
log.info(str(e))
|
|
failed = True
|
|
if failed or not data:
|
|
log.info("Couldn't get activedata data")
|
|
return None
|
|
|
|
# Find the newest browsertime task
|
|
log.info("Found %s datums" % str(len(data["action.start_time"])))
|
|
maxind = np.argmax([float(t) for t in data["action.start_time"]])
|
|
artifacts = data["task.artifacts"][maxind]
|
|
btime_artifact = None
|
|
for art in artifacts:
|
|
if "browsertime-results" in art["name"]:
|
|
btime_artifact = art["url"]
|
|
break
|
|
if not btime_artifact:
|
|
log.info("Can't find an older site test")
|
|
return None
|
|
|
|
log.info("Comparing videos to TASK_GROUP=%s, TASK_ID=%s" % (
|
|
data["task.group.id"][maxind], data["task.id"][maxind]
|
|
))
|
|
|
|
# Download the browsertime videos and untar them
|
|
tmpdir = tempfile.mkdtemp()
|
|
loc = os.path.join(tmpdir, "tmpfile.tgz")
|
|
if not _download(btime_artifact, loc):
|
|
log.info(
|
|
"Failed to download browsertime-results artifact from %s" % btime_artifact
|
|
)
|
|
return None
|
|
tmploc = tempfile.mkdtemp()
|
|
try:
|
|
with tarfile.open(str(loc)) as tar:
|
|
tar.extractall(path=tmploc)
|
|
except Exception:
|
|
log.info(
|
|
"Could not read/extract old browsertime results archive",
|
|
path=loc,
|
|
exc_info=True,
|
|
)
|
|
return None
|
|
|
|
return tmploc
|
|
|
|
|
|
def _data_from_last_task(label):
|
|
"""Gets the data from the last PGO/OPT task with the same label.
|
|
|
|
We look for both OPT and PGO tasks. The difference
|
|
between them should be minimal. This method also provides
|
|
a way to compare recordings from this task to another
|
|
known task based on the TC_GROUP_ID environment varible.
|
|
"""
|
|
label_opt = label.replace("/pgo", "/opt")
|
|
label_pgo = label.replace("/opt", "/pgo")
|
|
|
|
base_ad_query["where"]["and"] = [
|
|
{"in": {"task.run.state": ["completed"]}},
|
|
{"or": [
|
|
{"eq": {"run.name": label_pgo}},
|
|
{"eq": {"run.name": label_opt}}
|
|
]}
|
|
]
|
|
|
|
task_group_id = os.getenv("TC_GROUP_ID", "")
|
|
if task_group_id:
|
|
base_ad_query["where"]["and"].append(
|
|
{"eq": {"task.group.id": task_group_id}}
|
|
)
|
|
else:
|
|
base_ad_query["where"]["and"].extend([
|
|
{"in": {"repo.branch.name": ["mozilla-central"]}},
|
|
{"gte": {"action.start_time": {"date": "today-week-week"}}},
|
|
])
|
|
|
|
return _get_browsertime_results(base_ad_query)
|
|
|
|
|
|
def _data_from_last_live_task(label):
|
|
"""Gets the data from the last live site PGO task."""
|
|
label_live = label.replace("/opt", "/pgo").replace("tp6m", "tp6m-live")
|
|
|
|
base_ad_query["where"]["and"] = [
|
|
{"in": {"repo.branch.name": ["mozilla-central"]}},
|
|
{"gte": {"action.start_time": {"date": "today-week-week"}}},
|
|
{"in": {"task.run.state": ["completed"]}},
|
|
{"eq": {"run.name": label_live}},
|
|
]
|
|
|
|
return _get_browsertime_results(base_ad_query)
|
|
|
|
|
|
def _get_similarity(old_videos_info, new_videos_info, output, prefix=""):
|
|
"""Calculates a similarity score for two groupings of videos.
|
|
|
|
The technique works as follows:
|
|
1. Get the last live site test.
|
|
2. For each 15x15 video pairings, build a cross-correlation matrix:
|
|
1. Get each of the videos and calculate their histograms
|
|
across the full videos.
|
|
2. Calculate the correlation coefficient between these two.
|
|
3. Average the cross-correlation matrix to obtain the score.
|
|
|
|
The 2D similarity score is the same, except that it builds a histogram
|
|
from the final frame instead of the full video.
|
|
|
|
Args:
|
|
old_videos: List of old videos.
|
|
new_videos: List of new videos (from this task).
|
|
output: Location to output videos with low similarity scores.
|
|
prefix: Prefix a string to the output.
|
|
Returns:
|
|
Two similarity scores (3D, 2D) as a float.
|
|
"""
|
|
nhists = []
|
|
nhists2d = []
|
|
|
|
old_videos = [entry["data"] for entry in old_videos_info]
|
|
new_videos = [entry["data"] for entry in new_videos_info]
|
|
|
|
total_vids = min(len(old_videos), len(new_videos))
|
|
xcorr = np.zeros((total_vids, total_vids))
|
|
xcorr2d = np.zeros((total_vids, total_vids))
|
|
|
|
for i in range(total_vids):
|
|
datao = np.asarray(_get_frames(old_videos[i]))
|
|
|
|
histo, _, _ = plt.hist(datao.flatten(), bins=255)
|
|
histo2d, _, _ = plt.hist(datao[-1, :, :].flatten(), bins=255)
|
|
|
|
for j in range(total_vids):
|
|
if i == 0:
|
|
# Only calculate the histograms once; it takes time
|
|
datan = np.asarray(_get_frames(new_videos[j]))
|
|
|
|
histn, _, _ = plt.hist(datan.flatten(), bins=255)
|
|
histn2d, _, _ = plt.hist(datan[-1, :, :].flatten(), bins=255)
|
|
|
|
nhists.append(histn)
|
|
nhists2d.append(histn2d)
|
|
else:
|
|
histn = nhists[j]
|
|
histn2d = nhists2d[j]
|
|
|
|
rho, _ = spearmanr(histn, histo)
|
|
rho2d, _ = spearmanr(histn2d, histo2d)
|
|
|
|
xcorr[i, j] = rho
|
|
xcorr2d[i, j] = rho2d
|
|
|
|
similarity = np.mean(xcorr)
|
|
similarity2d = np.mean(xcorr2d)
|
|
|
|
log.info("Average 3D similarity: %s" % str(np.round(similarity, 5)))
|
|
log.info("Average 2D similarity: %s" % str(np.round(similarity2d, 5)))
|
|
|
|
if np.round(similarity, 1) <= 0.7 or np.round(similarity2d, 1) <= 0.7:
|
|
# For low correlations, output the worst video pairing
|
|
# so that we can visually see what the issue was
|
|
minind = np.unravel_index(np.argmin(xcorr, axis=None), xcorr.shape)
|
|
|
|
oldvid = old_videos_info[minind[0]]["path"]
|
|
shutil.copyfile(oldvid, str(pathlib.Path(output, "%sold_video.mp4" % prefix)))
|
|
|
|
newvid = new_videos_info[minind[1]]["path"]
|
|
shutil.copyfile(newvid, str(pathlib.Path(output, "%snew_video.mp4" % prefix)))
|
|
|
|
return np.round(similarity, 5), np.round(similarity2d, 5)
|
|
|
|
|
|
def calculate_similarity(jobs_json, fetch_dir, output):
|
|
"""Calculates the similarity score for this task.
|
|
|
|
Here we use activedata to find the last live site that ran and
|
|
to find the last task (with the same label) that ran. Those two
|
|
tasks are then compared to the current one and 4 metrics are produced.
|
|
|
|
For live sites, we only calculate 2 of these metrics, since the
|
|
playback similarity is not applicable to it.
|
|
|
|
Args:
|
|
jobs_json: The jobs JSON that holds extra information.
|
|
fetch_dir: The fetch directory that holds the new videos.
|
|
output: The output directory.
|
|
Returns:
|
|
A dictionary containing up to 4 different metrics (their values default
|
|
to None if a metric couldn't be calculated):
|
|
PlaybackSimilarity: Similarity of the full playback to a live site test.
|
|
PlaybackSimilarity2D: - // - (but for the final frame only)
|
|
Similarity: Similarity of the tests video recording to its last run.
|
|
Similarity2D: - // - (but for the final frame only)
|
|
"""
|
|
global log
|
|
log = structlog.get_logger()
|
|
|
|
label = os.getenv("TC_LABEL", "")
|
|
if not label:
|
|
log.info("TC_LABEL is undefined, cannot calculate similarity metrics")
|
|
return {}
|
|
|
|
# Get all the newest videos from this task
|
|
new_btime_videos = [
|
|
{"data": _open_data(str(f)), "path": str(f)}
|
|
for f in pathlib.Path(fetch_dir).rglob("*.mp4")
|
|
]
|
|
log.info("Found %s new videos" % str(len(new_btime_videos)))
|
|
|
|
# Get the similarity against the last task
|
|
old_btime_res = _data_from_last_task(label)
|
|
old_sim = old_sim2d = None
|
|
if old_btime_res:
|
|
old_btime_videos = [
|
|
{"data": _open_data(str(f)), "path": str(f)}
|
|
for f in pathlib.Path(old_btime_res).rglob("*.mp4")
|
|
]
|
|
log.info("Found %s old videos" % str(len(old_btime_videos)))
|
|
|
|
old_sim, old_sim2d = _get_similarity(
|
|
old_btime_videos, new_btime_videos, output
|
|
)
|
|
else:
|
|
log.info("Failed to find an older test task")
|
|
|
|
# Compare recordings to their live site variant if it exists
|
|
live_sim = live_sim2d = None
|
|
if "live" not in jobs_json["extra_options"]:
|
|
live_btime_res = _data_from_last_live_task(label)
|
|
if live_btime_res:
|
|
live_btime_videos = [
|
|
{"data": _open_data(str(f)), "path": str(f)}
|
|
for f in pathlib.Path(live_btime_res).rglob("*.mp4")
|
|
]
|
|
log.info("Found %s live videos" % str(len(live_btime_videos)))
|
|
|
|
live_sim, live_sim2d = _get_similarity(
|
|
live_btime_videos, new_btime_videos, output, prefix="live_"
|
|
)
|
|
else:
|
|
log.info("Failed to find a live site variant")
|
|
|
|
return {
|
|
"PlaybackSimilarity": live_sim,
|
|
"PlaybackSimilarity2D": live_sim2d,
|
|
"Similarity": old_sim,
|
|
"Similarity2D": old_sim2d,
|
|
}
|