mirror of
https://github.com/fork-maintainers/iceraven-browser
synced 2024-11-07 15:20:38 +00:00
dfdad35cca
* Fix browsertime failures. * Run a browsertime test. * Undo browsertime test.
252 lines
8.3 KiB
Python
252 lines
8.3 KiB
Python
#!/usr/bin/env python3
|
|
#
|
|
# This Source Code Form is subject to the terms of the Mozilla Public
|
|
# License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
import cv2
|
|
import json
|
|
import numpy as np
|
|
import os
|
|
import pathlib
|
|
import shutil
|
|
import socket
|
|
import tarfile
|
|
import tempfile
|
|
import urllib
|
|
|
|
from functools import wraps
|
|
from matplotlib import pyplot as plt
|
|
from scipy.stats import spearmanr
|
|
|
|
|
|
def open_data(file):
|
|
return cv2.VideoCapture(str(file))
|
|
|
|
|
|
def socket_timeout(value=120):
|
|
"""Decorator for socket timeouts."""
|
|
def _socket_timeout(func):
|
|
@wraps(func)
|
|
def __socket_timeout(*args, **kw):
|
|
old = socket.getdefaulttimeout()
|
|
socket.setdefaulttimeout(value)
|
|
try:
|
|
return func(*args, **kw)
|
|
finally:
|
|
socket.setdefaulttimeout(old)
|
|
return __socket_timeout
|
|
return _socket_timeout
|
|
|
|
|
|
@socket_timeout(120)
|
|
def query_activedata(query_json, log):
|
|
"""Used to run queries on active data."""
|
|
active_data_url = "http://activedata.allizom.org/query"
|
|
|
|
req = urllib.request.Request(active_data_url)
|
|
req.add_header("Content-Type", "application/json")
|
|
jsondata = json.dumps(query_json)
|
|
|
|
jsondataasbytes = jsondata.encode("utf-8")
|
|
req.add_header("Content-Length", len(jsondataasbytes))
|
|
|
|
log.info("Querying Active-data...")
|
|
response = urllib.request.urlopen(req, jsondataasbytes)
|
|
log.info("Status: %s" % {str(response.getcode())})
|
|
|
|
data = json.loads(response.read().decode("utf8").replace("'", '"'))["data"]
|
|
return data
|
|
|
|
|
|
@socket_timeout(120)
|
|
def download(url, loc, log):
|
|
"""Downloads from a url (with a timeout)."""
|
|
log.info("Downloading %s" % url)
|
|
try:
|
|
urllib.request.urlretrieve(url, loc)
|
|
except Exception as e:
|
|
log.info(str(e))
|
|
return False
|
|
return True
|
|
|
|
|
|
def get_frames(video):
|
|
"""Gets all frames from a video into a list."""
|
|
allframes = []
|
|
while video.isOpened():
|
|
ret, frame = video.read()
|
|
if ret:
|
|
# Convert to gray to simplify the process
|
|
allframes.append(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY))
|
|
else:
|
|
video.release()
|
|
break
|
|
return allframes
|
|
|
|
|
|
def calculate_similarity(jobs_json, fetch_dir, output, log):
|
|
"""Calculates the similarity score against the last live site test.
|
|
|
|
The technique works as follows:
|
|
1. Get the last live site test.
|
|
2. For each 15x15 video pairings, build a cross-correlation matrix:
|
|
1. Get each of the videos and calculate their histograms
|
|
across the full videos.
|
|
2. Calculate the correlation coefficient between these two.
|
|
3. Average the cross-correlation matrix to obtain the score.
|
|
|
|
The 2D similarity score is the same, except that it builds a histogram
|
|
from the final frame instead of the full video.
|
|
|
|
For finding the last live site, we use active-data. We search for
|
|
PGO android builds since this metric is only available for live sites that
|
|
run on android in mozilla-cental. Given that live sites currently
|
|
run on cron 3 days a week, then it's also reasonable to look for tasks
|
|
which have occurred before today and within the last two weeks at most.
|
|
But this is a TODO for future work, since we need to determine a better
|
|
way of selecting the last task (HG push logs?) - there's a lot that factors
|
|
into these choices, so it might require a multi-faceted approach.
|
|
|
|
Args:
|
|
jobs_json: The jobs JSON that holds extra information.
|
|
fetch_dir: The fetch directory that holds the new videos.
|
|
log: The logger.
|
|
Returns:
|
|
Two similarity scores (3D, 2D) as a float, or None if there was an issue.
|
|
"""
|
|
app = jobs_json["application"]["name"]
|
|
test = jobs_json["jobs"][0]["test_name"]
|
|
splittest = test.split("-cold")
|
|
|
|
cold = ""
|
|
if len(splittest) > 0:
|
|
cold = ".*cold"
|
|
test = splittest[0]
|
|
|
|
# PGO vs. OPT shouldn't matter much, but we restrict it to PGO builds here
|
|
# for android, and desktop tests have the opt/pgo restriction removed
|
|
plat = os.getenv("TC_PLATFORM", "")
|
|
if "android" in plat:
|
|
plat = plat.replace("/opt", "/pgo")
|
|
else:
|
|
plat = plat.replace("/opt", "").replace("/pgo", "")
|
|
ad_query = {
|
|
"from": "task",
|
|
"limit": 1000,
|
|
"where": {
|
|
"and": [
|
|
{
|
|
"regexp": {
|
|
"run.name": ".*%s.*browsertime.*-live.*%s%s.*%s.*"
|
|
% (plat, app, cold, test)
|
|
}
|
|
},
|
|
{"not": {"prefix": {"run.name": "test-vismet"}}},
|
|
{"in": {"repo.branch.name": ["mozilla-central"]}},
|
|
{"gte": {"action.start_time": {"date": "today-week-week"}}},
|
|
{"lt": {"action.start_time": {"date": "today-1day"}}},
|
|
{"in": {"task.run.state": ["completed"]}},
|
|
]
|
|
},
|
|
"select": ["action.start_time", "run.name", "task.artifacts"],
|
|
}
|
|
|
|
# Run the AD query and find the browsertime videos to download
|
|
failed = False
|
|
try:
|
|
data = query_activedata(ad_query, log)
|
|
except Exception as e:
|
|
log.info(str(e))
|
|
failed = True
|
|
if failed or not data:
|
|
log.info("Couldn't get activedata data")
|
|
return None
|
|
|
|
log.info("Found %s datums" % str(len(data["action.start_time"])))
|
|
maxind = np.argmax([float(t) for t in data["action.start_time"]])
|
|
artifacts = data["task.artifacts"][maxind]
|
|
btime_artifact = None
|
|
for art in artifacts:
|
|
if "browsertime-results" in art["name"]:
|
|
btime_artifact = art["url"]
|
|
break
|
|
if not btime_artifact:
|
|
log.info("Can't find an older live site")
|
|
return None
|
|
|
|
# Download the browsertime videos and untar them
|
|
tmpdir = tempfile.mkdtemp()
|
|
loc = os.path.join(tmpdir, "tmpfile.tgz")
|
|
if not download(btime_artifact, loc, log):
|
|
return None
|
|
tmploc = tempfile.mkdtemp()
|
|
try:
|
|
with tarfile.open(str(loc)) as tar:
|
|
tar.extractall(path=tmploc)
|
|
except Exception:
|
|
log.info(
|
|
"Could not read/extract old browsertime results archive",
|
|
path=loc,
|
|
exc_info=True,
|
|
)
|
|
return None
|
|
|
|
# Find all the videos
|
|
oldmp4s = [str(f) for f in pathlib.Path(tmploc).rglob("*.mp4")]
|
|
log.info("Found %s old videos" % str(len(oldmp4s)))
|
|
newmp4s = [str(f) for f in pathlib.Path(fetch_dir).rglob("*.mp4")]
|
|
log.info("Found %s new videos" % str(len(newmp4s)))
|
|
|
|
# Finally, calculate the 2D/3D score
|
|
nhists = []
|
|
nhists2d = []
|
|
|
|
total_vids = min(len(oldmp4s), len(newmp4s))
|
|
xcorr = np.zeros((total_vids, total_vids))
|
|
xcorr2d = np.zeros((total_vids, total_vids))
|
|
|
|
for i in range(total_vids):
|
|
datao = np.asarray(get_frames(open_data(oldmp4s[i])))
|
|
|
|
histo, _, _ = plt.hist(datao.flatten(), bins=255)
|
|
histo2d, _, _ = plt.hist(datao[-1, :, :].flatten(), bins=255)
|
|
|
|
for j in range(total_vids):
|
|
if i == 0:
|
|
# Only calculate the histograms once; it takes time
|
|
datan = np.asarray(get_frames(open_data(newmp4s[j])))
|
|
|
|
histn, _, _ = plt.hist(datan.flatten(), bins=255)
|
|
histn2d, _, _ = plt.hist(datan[-1, :, :].flatten(), bins=255)
|
|
|
|
nhists.append(histn)
|
|
nhists2d.append(histn2d)
|
|
else:
|
|
histn = nhists[j]
|
|
histn2d = nhists2d[j]
|
|
|
|
rho, _ = spearmanr(histn, histo)
|
|
rho2d, _ = spearmanr(histn2d, histo2d)
|
|
|
|
xcorr[i, j] = rho
|
|
xcorr2d[i, j] = rho2d
|
|
|
|
similarity = np.mean(xcorr)
|
|
similarity2d = np.mean(xcorr2d)
|
|
|
|
log.info("Average 3D similarity: %s" % str(np.round(similarity, 5)))
|
|
log.info("Average 2D similarity: %s" % str(np.round(similarity2d, 5)))
|
|
|
|
if similarity < 0.5:
|
|
# For really low correlations, output the worst video pairing
|
|
# so that we can visually see what the issue was
|
|
minind = np.unravel_index(np.argmin(xcorr, axis=None), xcorr.shape)
|
|
|
|
oldvid = oldmp4s[minind[0]]
|
|
shutil.copyfile(oldvid, str(pathlib.Path(output, "old_video.mp4")))
|
|
|
|
newvid = newmp4s[minind[1]]
|
|
shutil.copyfile(newvid, str(pathlib.Path(output, "new_video.mp4")))
|
|
|
|
return np.round(similarity, 5), np.round(similarity2d, 5)
|