i2pd/Signature.cpp
2015-11-04 13:48:30 -05:00

432 lines
12 KiB
C++

#include <memory>
#include "Log.h"
#include "Signature.h"
namespace i2p
{
namespace crypto
{
class Ed25519
{
public:
Ed25519 ()
{
BN_CTX * ctx = BN_CTX_new ();
BIGNUM * two = BN_new (), * tmp = BN_new ();
BN_set_word (two, 2);
q = BN_new ();
// 2^255-19
BN_set_word (tmp, 255);
BN_exp (q, two, tmp, ctx);
BN_sub_word (q, 19);
// q_2 = q-2
q_2 = BN_dup (q);
BN_sub_word (q_2, 2);
l = BN_new ();
// 2^252 + 27742317777372353535851937790883648493
BN_set_word (tmp, 252);
BN_exp (l, two, tmp, ctx);
two_252_2 = BN_dup (l);
BN_dec2bn (&tmp, "27742317777372353535851937790883648493");
BN_add (l, l, tmp);
BN_sub_word (two_252_2, 2); // 2^252 - 2
// -121665*inv(121666)
d = BN_new ();
BN_set_word (tmp, 121666);
Inv (tmp, ctx);
BN_set_word (d, 121665);
BN_set_negative (d, 1);
BN_mul (d, d, tmp, ctx);
// 2^((q-1)/4)
I = BN_new ();
BN_free (tmp);
tmp = BN_dup (q);
BN_sub_word (tmp, 1);
BN_div_word (tmp, 4);
BN_mod_exp (I, two, tmp, q, ctx);
// 4*inv(5)
BIGNUM * By = BN_new ();
BN_set_word (By, 5);
Inv (By, ctx);
BN_mul_word (By, 4);
BIGNUM * Bx = RecoverX (By, ctx);
BN_mod (Bx, Bx, q, ctx); // % q
BN_mod (By, By, q, ctx); // % q
B = {Bx, By};
BN_free (two);
BN_free (tmp);
// precalculate Bi16 table
Bi16[0][0] = { BN_dup (Bx), BN_dup (By) };
for (int i = 0; i < 64; i++)
{
if (i) Bi16[i][0] = Sum (Bi16[i-1][14], Bi16[i-1][0], ctx);
for (int j = 1; j < 15; j++)
Bi16[i][j] = Sum (Bi16[i][j-1], Bi16[i][0], ctx); // (16+j+1)^i*B
}
BN_CTX_free (ctx);
}
~Ed25519 ()
{
BN_free (q);
BN_free (l);
BN_free (d);
BN_free (I);
BN_free (q_2);
BN_free (two_252_2);
}
EDDSAPoint GeneratePublicKey (const uint8_t * expandedPrivateKey, BN_CTX * ctx) const
{
return MulB (expandedPrivateKey, ctx); // left half of expanded key, considered as Little Endian
}
EDDSAPoint DecodePublicKey (const uint8_t * buf, BN_CTX * ctx) const
{
return DecodePoint (buf, ctx);
}
void EncodePublicKey (const EDDSAPoint& publicKey, uint8_t * buf) const
{
EncodePoint (publicKey, buf);
}
bool Verify (const EDDSAPoint& publicKey, const uint8_t * digest, const uint8_t * signature, BN_CTX * ctx) const
{
BIGNUM * h = DecodeBN (digest, 64);
// signature 0..31 - R, 32..63 - S
// B*S = R + PK*h => R = B*S - PK*h
// we don't decode R, but encode (B*S - PK*h)
auto Bs = MulB (signature + EDDSA25519_SIGNATURE_LENGTH/2, ctx); // B*S;
auto PKh = Mul (publicKey, h, ctx); // PK*h
uint8_t diff[32];
EncodePoint (Sum (Bs, -PKh, ctx), diff); // Bs - PKh encoded
bool passed = !memcmp (signature, diff, 32); // R
BN_free (h);
if (!passed)
LogPrint (eLogError, "25519 signature verification failed");
return passed;
}
void Sign (const uint8_t * expandedPrivateKey, const uint8_t * publicKeyEncoded, const uint8_t * buf, size_t len,
uint8_t * signature, BN_CTX * bnCtx) const
{
// calculate r
SHA512_CTX ctx;
SHA512_Init (&ctx);
SHA512_Update (&ctx, expandedPrivateKey + EDDSA25519_PRIVATE_KEY_LENGTH, EDDSA25519_PRIVATE_KEY_LENGTH); // right half of expanded key
SHA512_Update (&ctx, buf, len); // data
uint8_t digest[64];
SHA512_Final (digest, &ctx);
BIGNUM * r = DecodeBN (digest, 32); // DecodeBN (digest, 64); // for test vectors
// calculate R
uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf
EncodePoint (MulB (digest, bnCtx), R); // EncodePoint (Mul (B, r, bnCtx), R); // for test vectors
// calculate S
SHA512_Init (&ctx);
SHA512_Update (&ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R
SHA512_Update (&ctx, publicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key
SHA512_Update (&ctx, buf, len); // data
SHA512_Final (digest, &ctx);
BIGNUM * s = DecodeBN (digest, 64);
// S = (r + s*a) % l
BIGNUM * a = DecodeBN (expandedPrivateKey, EDDSA25519_PRIVATE_KEY_LENGTH); // left half of expanded key
BN_mul (s, s, a, bnCtx);
BN_add (s, s, r);
BN_mod (s, s, l, bnCtx); // % l
memcpy (signature, R, EDDSA25519_SIGNATURE_LENGTH/2);
EncodeBN (s, signature + EDDSA25519_SIGNATURE_LENGTH/2, EDDSA25519_SIGNATURE_LENGTH/2); // S
BN_free (r); BN_free (s); BN_free (a);
}
private:
EDDSAPoint Sum (const EDDSAPoint& p1, const EDDSAPoint& p2, BN_CTX * ctx) const
{
BIGNUM * xx = BN_new (), * yy = BN_new ();
// m = d*p1.x*p2.x*p1.y*p2.y
BN_mul (xx, p1.x, p2.x, ctx);
BN_mul (yy, p1.y, p2.y, ctx);
BIGNUM * m = BN_dup (d);
BN_mul (m, m, xx, ctx);
BN_mul (m, m, yy, ctx);
// x = (p1.x*p2.y + p2.x*p1.y)*inv(1 + m)
// y = (p1.y*p2.y + p1.x*p2.x)*inv(1 - m)
// use one inversion instead two
// m1 = 1-m
BIGNUM * m1 = BN_new ();
BN_one (m1);
BN_sub (m1, m1, m);
// m = m+1
BN_add_word (m, 1);
// y = (p1.y*p2.y + p1.x*p2.x)*m
BIGNUM * y = BN_new ();
BN_add (y, xx, yy);
BN_mod_mul (y, y, m, q, ctx);
// x = (p1.x*p2.y + p2.x*p1.y)*m1
BIGNUM * x = BN_new ();
BN_mul (yy, p1.x, p2.y, ctx);
BN_mul (xx, p2.x, p1.y, ctx);
BN_add (x, xx, yy);
BN_mod_mul (x, x, m1, q, ctx);
// denominator m = m*m1
BN_mod_mul (m, m, m1, q, ctx);
Inv (m, ctx);
BN_mod_mul (x, x, m, q, ctx); // x = x/m
BN_mod_mul (y, y, m, q, ctx); // y = y/m
BN_free (xx);BN_free (yy); BN_free (m); BN_free (m1);
return EDDSAPoint {x, y};
}
EDDSAPoint Double (const EDDSAPoint& p, BN_CTX * ctx) const
{
BIGNUM * pxy = BN_new ();
BN_mul (pxy, p.x, p.y, ctx);
// m = d*(p.x*p.y)^2
BIGNUM * m = BN_new ();
BN_sqr (m, pxy, ctx);
BN_mul (m, m, d, ctx);
// x = (2*p.x*p.y)*inv(1 + m)
// y = (p.x^2 + p.y^2)*inv(1 - m)
// use one inversion instead two
// m1 = 1-m
BIGNUM * m1 = BN_new ();
BN_one (m1);
BN_sub (m1, m1, m);
// m = m+1
BN_add_word (m, 1);
// x = 2*p.x*p.y*m1
BN_mul_word (pxy, 2);
BIGNUM * x = BN_new ();
BN_mod_mul (x, pxy, m1, q, ctx);
// y = (p.x^2 + p.y^2)*m
BIGNUM * y = BN_new ();
BN_sqr (pxy, p.x, ctx);
BN_sqr (y, p.y, ctx);
BN_add (pxy, pxy, y);
BN_mod_mul (y, pxy, m, q, ctx);
// denominator m = m*m1
BN_mod_mul (m, m, m1, q, ctx);
Inv (m, ctx);
BN_mod_mul (x, x, m, q, ctx); // x = x/m
BN_mod_mul (y, y, m, q, ctx); // y = y/m
BN_free (pxy); BN_free (m); BN_free (m1);
return EDDSAPoint {x, y};
}
EDDSAPoint Mul (const EDDSAPoint& p, const BIGNUM * e, BN_CTX * ctx) const
{
BIGNUM * zero = BN_new (), * one = BN_new ();
BN_zero (zero); BN_one (one);
EDDSAPoint res {zero, one};
if (!BN_is_zero (e))
{
int bitCount = BN_num_bits (e);
for (int i = bitCount - 1; i >= 0; i--)
{
res = Double (res, ctx);
if (BN_is_bit_set (e, i)) res = Sum (res, p, ctx);
}
}
return res;
}
EDDSAPoint MulB (const uint8_t * e, BN_CTX * ctx) const // B*e. e is 32 bytes Little Endian
{
BIGNUM * zero = BN_new (), * one = BN_new ();
BN_zero (zero); BN_one (one);
EDDSAPoint res {zero, one};
for (int i = 0; i < 32; i++)
{
uint8_t x = e[i] & 0x0F; // 4 low bits
if (x > 0)
res = Sum (res, Bi16[i*2][x-1], ctx);
x = e[i] >> 4; // 4 high bits
if (x > 0)
res = Sum (res, Bi16[i*2+1][x-1], ctx);
}
return res;
}
void Inv (BIGNUM * x, BN_CTX * ctx) const
{
BN_mod_exp (x, x, q_2, q, ctx);
}
bool IsOnCurve (const EDDSAPoint& p, BN_CTX * ctx) const
{
BIGNUM * x2 = BN_new ();
BN_sqr (x2, p.x, ctx); // x^2
BIGNUM * y2 = BN_new ();
BN_sqr (y2, p.y, ctx); // y^2
// y^2 - x^2 - 1 - d*x^2*y^2
BIGNUM * tmp = BN_new ();
BN_mul (tmp, d, x2, ctx);
BN_mul (tmp, tmp, y2, ctx);
BN_sub (tmp, y2, tmp);
BN_sub (tmp, tmp, x2);
BN_sub_word (tmp, 1);
BN_mod (tmp, tmp, q, ctx); // % q
bool ret = BN_is_zero (tmp);
BN_free (x2);
BN_free (y2);
BN_free (tmp);
return ret;
}
BIGNUM * RecoverX (const BIGNUM * y, BN_CTX * ctx) const
{
BIGNUM * y2 = BN_new ();
BN_sqr (y2, y, ctx); // y^2
// xx = (y^2 -1)*inv(d*y^2 +1)
BIGNUM * xx = BN_new ();
BN_mul (xx, d, y2, ctx);
BN_add_word (xx, 1);
Inv (xx, ctx);
BN_sub_word (y2, 1);
BN_mul (xx, y2, xx, ctx);
// x = srqt(xx) = xx^(2^252-2)
BIGNUM * x = BN_new ();
BN_mod_exp (x, xx, two_252_2, q, ctx);
// check (x^2 -xx) % q
BN_sqr (y2, x, ctx);
BN_mod_sub (y2, y2, xx, q, ctx);
if (!BN_is_zero (y2))
BN_mod_mul (x, x, I, q, ctx);
if (BN_is_odd (x))
BN_sub (x, q, x);
BN_free (y2);
BN_free (xx);
return x;
}
EDDSAPoint DecodePoint (const uint8_t * buf, BN_CTX * ctx) const
{
// buf is 32 bytes Little Endian, convert it to Big Endian
uint8_t buf1[EDDSA25519_PUBLIC_KEY_LENGTH];
for (size_t i = 0; i < EDDSA25519_PUBLIC_KEY_LENGTH/2; i++) // invert bytes
{
buf1[i] = buf[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i];
buf1[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i] = buf[i];
}
bool isHighestBitSet = buf1[0] & 0x80;
if (isHighestBitSet)
buf1[0] &= 0x7f; // clear highest bit
BIGNUM * y = BN_new ();
BN_bin2bn (buf1, EDDSA25519_PUBLIC_KEY_LENGTH, y);
auto x = RecoverX (y, ctx);
if (BN_is_bit_set (x, 0) != isHighestBitSet)
BN_sub (x, q, x); // x = q - x
EDDSAPoint p {x, y};
if (!IsOnCurve (p, ctx))
LogPrint (eLogError, "Decoded point is not on 25519");
return p;
}
void EncodePoint (const EDDSAPoint& p, uint8_t * buf) const
{
EncodeBN (p.y, buf,EDDSA25519_PUBLIC_KEY_LENGTH);
if (BN_is_bit_set (p.x, 0)) // highest bit
buf[EDDSA25519_PUBLIC_KEY_LENGTH - 1] |= 0x80; // set highest bit
}
BIGNUM * DecodeBN (const uint8_t * buf, size_t len) const
{
// buf is Little Endian convert it to Big Endian
uint8_t buf1[len];
for (size_t i = 0; i < len/2; i++) // invert bytes
{
buf1[i] = buf[len -1 - i];
buf1[len -1 - i] = buf[i];
}
BIGNUM * res = BN_new ();
BN_bin2bn (buf1, len, res);
return res;
}
void EncodeBN (const BIGNUM * bn, uint8_t * buf, size_t len) const
{
bn2buf (bn, buf, len);
// To Little Endian
for (size_t i = 0; i < len/2; i++) // invert bytes
{
uint8_t tmp = buf[i];
buf[i] = buf[len -1 - i];
buf[len -1 - i] = tmp;
}
}
private:
BIGNUM * q, * l, * d, * I;
EDDSAPoint B; // base point
// transient values
BIGNUM * q_2; // q-2
BIGNUM * two_252_2; // 2^252-2
EDDSAPoint Bi16[64][15]; // per 4-bits, Bi16[i][j] = (16+j+1)^i*B, we don't store zeroes
};
static std::unique_ptr<Ed25519> g_Ed25519;
std::unique_ptr<Ed25519>& GetEd25519 ()
{
if (!g_Ed25519)
g_Ed25519.reset (new Ed25519 ());
return g_Ed25519;
}
EDDSA25519Verifier::EDDSA25519Verifier (const uint8_t * signingKey):
m_Ctx (BN_CTX_new ()),
m_PublicKey (GetEd25519 ()->DecodePublicKey (signingKey, m_Ctx))
{
memcpy (m_PublicKeyEncoded, signingKey, EDDSA25519_PUBLIC_KEY_LENGTH);
}
bool EDDSA25519Verifier::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
SHA512_CTX ctx;
SHA512_Init (&ctx);
SHA512_Update (&ctx, signature, EDDSA25519_SIGNATURE_LENGTH/2); // R
SHA512_Update (&ctx, m_PublicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key
SHA512_Update (&ctx, buf, len); // data
uint8_t digest[64];
SHA512_Final (digest, &ctx);
return GetEd25519 ()->Verify (m_PublicKey, digest, signature, m_Ctx);
}
EDDSA25519Signer::EDDSA25519Signer (const uint8_t * signingPrivateKey):
m_Ctx (BN_CTX_new ())
{
// expand key
SHA512 (signingPrivateKey, EDDSA25519_PRIVATE_KEY_LENGTH, m_ExpandedPrivateKey);
m_ExpandedPrivateKey[0] &= 0xF8; // drop last 3 bits
m_ExpandedPrivateKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] &= 0x1F; // drop first 3 bits
m_ExpandedPrivateKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] |= 0x40; // set second bit
// generate and encode public key
auto publicKey = GetEd25519 ()->GeneratePublicKey (m_ExpandedPrivateKey, m_Ctx);
GetEd25519 ()->EncodePublicKey (publicKey, m_PublicKeyEncoded);
}
void EDDSA25519Signer::Sign (const uint8_t * buf, int len, uint8_t * signature) const
{
GetEd25519 ()->Sign (m_ExpandedPrivateKey, m_PublicKeyEncoded, buf, len, signature, m_Ctx);
}
}
}