/* * Copyright (c) 2013-2020, The PurpleI2P Project * * This file is part of Purple i2pd project and licensed under BSD3 * * See full license text in LICENSE file at top of project tree */ #include #include "I2PEndian.h" #include "Crypto.h" #include "Log.h" #include "Tag.h" #include "Timestamp.h" #include "NetDb.hpp" #include "Tunnel.h" #include "LeaseSet.h" namespace i2p { namespace data { LeaseSet::LeaseSet (bool storeLeases): m_IsValid (false), m_StoreLeases (storeLeases), m_ExpirationTime (0), m_EncryptionKey (nullptr), m_Buffer (nullptr), m_BufferLen (0) { } LeaseSet::LeaseSet (const uint8_t * buf, size_t len, bool storeLeases): m_IsValid (true), m_StoreLeases (storeLeases), m_ExpirationTime (0), m_EncryptionKey (nullptr) { m_Buffer = new uint8_t[len]; memcpy (m_Buffer, buf, len); m_BufferLen = len; ReadFromBuffer (); } void LeaseSet::Update (const uint8_t * buf, size_t len, bool verifySignature) { if (len > m_BufferLen) { auto oldBuffer = m_Buffer; m_Buffer = new uint8_t[len]; delete[] oldBuffer; } memcpy (m_Buffer, buf, len); m_BufferLen = len; ReadFromBuffer (false, verifySignature); } void LeaseSet::PopulateLeases () { m_StoreLeases = true; ReadFromBuffer (false); } void LeaseSet::ReadFromBuffer (bool readIdentity, bool verifySignature) { if (readIdentity || !m_Identity) m_Identity = std::make_shared(m_Buffer, m_BufferLen); size_t size = m_Identity->GetFullLen (); if (size > m_BufferLen) { LogPrint (eLogError, "LeaseSet: identity length ", size, " exceeds buffer size ", m_BufferLen); m_IsValid = false; return; } if (m_StoreLeases) { if (!m_EncryptionKey) m_EncryptionKey = new uint8_t[256]; memcpy (m_EncryptionKey, m_Buffer + size, 256); } size += 256; // encryption key size += m_Identity->GetSigningPublicKeyLen (); // unused signing key uint8_t num = m_Buffer[size]; size++; // num LogPrint (eLogDebug, "LeaseSet: read num=", (int)num); if (!num || num > MAX_NUM_LEASES) { LogPrint (eLogError, "LeaseSet: incorrect number of leases", (int)num); m_IsValid = false; return; } UpdateLeasesBegin (); // process leases m_ExpirationTime = 0; auto ts = i2p::util::GetMillisecondsSinceEpoch (); const uint8_t * leases = m_Buffer + size; for (int i = 0; i < num; i++) { Lease lease; lease.tunnelGateway = leases; leases += 32; // gateway lease.tunnelID = bufbe32toh (leases); leases += 4; // tunnel ID lease.endDate = bufbe64toh (leases); leases += 8; // end date UpdateLease (lease, ts); } if (!m_ExpirationTime) { LogPrint (eLogWarning, "LeaseSet: all leases are expired. Dropped"); m_IsValid = false; return; } m_ExpirationTime += LEASE_ENDDATE_THRESHOLD; UpdateLeasesEnd (); // verify if (verifySignature && !m_Identity->Verify (m_Buffer, leases - m_Buffer, leases)) { LogPrint (eLogWarning, "LeaseSet: verification failed"); m_IsValid = false; } } void LeaseSet::UpdateLeasesBegin () { // reset existing leases if (m_StoreLeases) for (auto& it: m_Leases) it->isUpdated = false; else m_Leases.clear (); } void LeaseSet::UpdateLeasesEnd () { // delete old leases if (m_StoreLeases) { for (auto it = m_Leases.begin (); it != m_Leases.end ();) { if (!(*it)->isUpdated) { (*it)->endDate = 0; // somebody might still hold it m_Leases.erase (it++); } else ++it; } } } void LeaseSet::UpdateLease (const Lease& lease, uint64_t ts) { if (ts < lease.endDate + LEASE_ENDDATE_THRESHOLD) { if (lease.endDate > m_ExpirationTime) m_ExpirationTime = lease.endDate; if (m_StoreLeases) { auto ret = m_Leases.insert (std::make_shared(lease)); if (!ret.second) (*ret.first)->endDate = lease.endDate; // update existing (*ret.first)->isUpdated = true; } } else LogPrint (eLogWarning, "LeaseSet: Lease is expired already"); } uint64_t LeaseSet::ExtractExpirationTimestamp (const uint8_t * buf, size_t len) const { if (!m_Identity) return 0; size_t size = m_Identity->GetFullLen (); if (size > len) return 0; size += 256; // encryption key size += m_Identity->GetSigningPublicKeyLen (); // unused signing key if (size > len) return 0; uint8_t num = buf[size]; size++; // num if (size + num*LEASE_SIZE > len) return 0; uint64_t timestamp= 0 ; for (int i = 0; i < num; i++) { size += 36; // gateway (32) + tunnelId(4) auto endDate = bufbe64toh (buf + size); size += 8; // end date if (!timestamp || endDate < timestamp) timestamp = endDate; } return timestamp; } bool LeaseSet::IsNewer (const uint8_t * buf, size_t len) const { return ExtractExpirationTimestamp (buf, len) > (m_ExpirationTime ? m_ExpirationTime : ExtractExpirationTimestamp (m_Buffer, m_BufferLen)); } bool LeaseSet::ExpiresSoon(const uint64_t dlt, const uint64_t fudge) const { auto now = i2p::util::GetMillisecondsSinceEpoch (); if (fudge) now += rand() % fudge; if (now >= m_ExpirationTime) return true; return m_ExpirationTime - now <= dlt; } const std::vector > LeaseSet::GetNonExpiredLeases (bool withThreshold) const { return GetNonExpiredLeasesExcluding( [] (const Lease & l) -> bool { return false; }, withThreshold); } const std::vector > LeaseSet::GetNonExpiredLeasesExcluding (LeaseInspectFunc exclude, bool withThreshold) const { auto ts = i2p::util::GetMillisecondsSinceEpoch (); std::vector > leases; for (const auto& it: m_Leases) { auto endDate = it->endDate; if (withThreshold) endDate += LEASE_ENDDATE_THRESHOLD; else endDate -= LEASE_ENDDATE_THRESHOLD; if (ts < endDate && !exclude(*it)) leases.push_back (it); } return leases; } bool LeaseSet::HasExpiredLeases () const { auto ts = i2p::util::GetMillisecondsSinceEpoch (); for (const auto& it: m_Leases) if (ts >= it->endDate) return true; return false; } bool LeaseSet::IsExpired () const { if (m_StoreLeases && IsEmpty ()) return true; auto ts = i2p::util::GetMillisecondsSinceEpoch (); return ts > m_ExpirationTime; } void LeaseSet::Encrypt (const uint8_t * data, uint8_t * encrypted, BN_CTX * ctx) const { if (!m_EncryptionKey) return; auto encryptor = m_Identity->CreateEncryptor (m_EncryptionKey); if (encryptor) encryptor->Encrypt (data, encrypted, ctx, true); } void LeaseSet::SetBuffer (const uint8_t * buf, size_t len) { if (m_Buffer) delete[] m_Buffer; m_Buffer = new uint8_t[len]; m_BufferLen = len; memcpy (m_Buffer, buf, len); } void LeaseSet::SetBufferLen (size_t len) { if (len <= m_BufferLen) m_BufferLen = len; else LogPrint (eLogError, "LeaseSet2: actual buffer size ", len , " exceeds full buffer size ", m_BufferLen); } LeaseSet2::LeaseSet2 (uint8_t storeType, const uint8_t * buf, size_t len, bool storeLeases, CryptoKeyType preferredCrypto): LeaseSet (storeLeases), m_StoreType (storeType), m_EncryptionType (preferredCrypto) { SetBuffer (buf, len); if (storeType == NETDB_STORE_TYPE_ENCRYPTED_LEASESET2) ReadFromBufferEncrypted (buf, len, nullptr, nullptr); else ReadFromBuffer (buf, len); } LeaseSet2::LeaseSet2 (const uint8_t * buf, size_t len, std::shared_ptr key, const uint8_t * secret, CryptoKeyType preferredCrypto): LeaseSet (true), m_StoreType (NETDB_STORE_TYPE_ENCRYPTED_LEASESET2), m_EncryptionType (preferredCrypto) { ReadFromBufferEncrypted (buf, len, key, secret); } void LeaseSet2::Update (const uint8_t * buf, size_t len, bool verifySignature) { SetBuffer (buf, len); if (GetStoreType () != NETDB_STORE_TYPE_ENCRYPTED_LEASESET2) ReadFromBuffer (buf, len, false, verifySignature); // TODO: implement encrypted } bool LeaseSet2::IsNewer (const uint8_t * buf, size_t len) const { uint64_t expiration; return ExtractPublishedTimestamp (buf, len, expiration) > m_PublishedTimestamp; } void LeaseSet2::ReadFromBuffer (const uint8_t * buf, size_t len, bool readIdentity, bool verifySignature) { // standard LS2 header std::shared_ptr identity; if (readIdentity) { identity = std::make_shared(buf, len); SetIdentity (identity); } else identity = GetIdentity (); size_t offset = identity->GetFullLen (); if (offset + 8 >= len) return; m_PublishedTimestamp = bufbe32toh (buf + offset); offset += 4; // published timestamp (seconds) uint16_t expires = bufbe16toh (buf + offset); offset += 2; // expires (seconds) SetExpirationTime ((m_PublishedTimestamp + expires)*1000LL); // in milliseconds uint16_t flags = bufbe16toh (buf + offset); offset += 2; // flags if (flags & LEASESET2_FLAG_OFFLINE_KEYS) { // transient key m_TransientVerifier = ProcessOfflineSignature (identity, buf, len, offset); if (!m_TransientVerifier) { LogPrint (eLogError, "LeaseSet2: offline signature failed"); return; } } if (flags & LEASESET2_FLAG_UNPUBLISHED_LEASESET) m_IsPublic = false; if (flags & LEASESET2_FLAG_PUBLISHED_ENCRYPTED) { m_IsPublishedEncrypted = true; m_IsPublic = true; } // type specific part size_t s = 0; switch (m_StoreType) { case NETDB_STORE_TYPE_STANDARD_LEASESET2: s = ReadStandardLS2TypeSpecificPart (buf + offset, len - offset); break; case NETDB_STORE_TYPE_META_LEASESET2: s = ReadMetaLS2TypeSpecificPart (buf + offset, len - offset); break; default: LogPrint (eLogWarning, "LeaseSet2: Unexpected store type ", (int)m_StoreType); } if (!s) return; offset += s; if (verifySignature || m_TransientVerifier) { // verify signature bool verified = m_TransientVerifier ? VerifySignature (m_TransientVerifier, buf, len, offset) : VerifySignature (identity, buf, len, offset); SetIsValid (verified); } offset += m_TransientVerifier ? m_TransientVerifier->GetSignatureLen () : identity->GetSignatureLen (); SetBufferLen (offset); } template bool LeaseSet2::VerifySignature (Verifier& verifier, const uint8_t * buf, size_t len, size_t signatureOffset) { if (signatureOffset + verifier->GetSignatureLen () > len) return false; // we assume buf inside DatabaseStore message, so buf[-1] is valid memory // change it for signature verification, and restore back uint8_t c = buf[-1]; const_cast(buf)[-1] = m_StoreType; bool verified = verifier->Verify (buf - 1, signatureOffset + 1, buf + signatureOffset); const_cast(buf)[-1] = c; if (!verified) LogPrint (eLogWarning, "LeaseSet2: verification failed"); return verified; } size_t LeaseSet2::ReadStandardLS2TypeSpecificPart (const uint8_t * buf, size_t len) { size_t offset = 0; // properties uint16_t propertiesLen = bufbe16toh (buf + offset); offset += 2; offset += propertiesLen; // skip for now. TODO: implement properties if (offset + 1 >= len) return 0; // key sections CryptoKeyType preferredKeyType = m_EncryptionType; bool preferredKeyFound = false; int numKeySections = buf[offset]; offset++; for (int i = 0; i < numKeySections; i++) { uint16_t keyType = bufbe16toh (buf + offset); offset += 2; // encryption key type if (offset + 2 >= len) return 0; uint16_t encryptionKeyLen = bufbe16toh (buf + offset); offset += 2; if (offset + encryptionKeyLen >= len) return 0; if (IsStoreLeases () && !preferredKeyFound) // create encryptor with leases only { // we pick first valid key if preferred not found auto encryptor = i2p::data::IdentityEx::CreateEncryptor (keyType, buf + offset); if (encryptor && (!m_Encryptor || keyType == preferredKeyType)) { m_Encryptor = encryptor; // TODO: atomic m_EncryptionType = keyType; if (keyType == preferredKeyType) preferredKeyFound = true; } } offset += encryptionKeyLen; } // leases if (offset + 1 >= len) return 0; int numLeases = buf[offset]; offset++; auto ts = i2p::util::GetMillisecondsSinceEpoch (); if (IsStoreLeases ()) { UpdateLeasesBegin (); for (int i = 0; i < numLeases; i++) { if (offset + LEASE2_SIZE > len) return 0; Lease lease; lease.tunnelGateway = buf + offset; offset += 32; // gateway lease.tunnelID = bufbe32toh (buf + offset); offset += 4; // tunnel ID lease.endDate = bufbe32toh (buf + offset)*1000LL; offset += 4; // end date UpdateLease (lease, ts); } UpdateLeasesEnd (); } else offset += numLeases*LEASE2_SIZE; // 40 bytes per lease return offset; } size_t LeaseSet2::ReadMetaLS2TypeSpecificPart (const uint8_t * buf, size_t len) { size_t offset = 0; // properties uint16_t propertiesLen = bufbe16toh (buf + offset); offset += 2; offset += propertiesLen; // skip for now. TODO: implement properties // entries if (offset + 1 >= len) return 0; int numEntries = buf[offset]; offset++; for (int i = 0; i < numEntries; i++) { if (offset + 40 >= len) return 0; offset += 32; // hash offset += 3; // flags offset += 1; // cost offset += 4; // expires } // revocations if (offset + 1 >= len) return 0; int numRevocations = buf[offset]; offset++; for (int i = 0; i < numRevocations; i++) { if (offset + 32 > len) return 0; offset += 32; // hash } return offset; } void LeaseSet2::ReadFromBufferEncrypted (const uint8_t * buf, size_t len, std::shared_ptr key, const uint8_t * secret) { size_t offset = 0; // blinded key if (len < 2) return; const uint8_t * stA1 = buf + offset; // stA1 = blinded signature type, 2 bytes big endian uint16_t blindedKeyType = bufbe16toh (stA1); offset += 2; std::unique_ptr blindedVerifier (i2p::data::IdentityEx::CreateVerifier (blindedKeyType)); if (!blindedVerifier) return; auto blindedKeyLen = blindedVerifier->GetPublicKeyLen (); if (offset + blindedKeyLen >= len) return; const uint8_t * blindedPublicKey = buf + offset; blindedVerifier->SetPublicKey (blindedPublicKey); offset += blindedKeyLen; // expiration if (offset + 8 >= len) return; const uint8_t * publishedTimestamp = buf + offset; m_PublishedTimestamp = bufbe32toh (publishedTimestamp); offset += 4; // published timestamp (seconds) uint16_t expires = bufbe16toh (buf + offset); offset += 2; // expires (seconds) SetExpirationTime ((m_PublishedTimestamp + expires)*1000LL); // in milliseconds uint16_t flags = bufbe16toh (buf + offset); offset += 2; // flags if (flags & LEASESET2_FLAG_OFFLINE_KEYS) { // transient key m_TransientVerifier = ProcessOfflineSignature (blindedVerifier, buf, len, offset); if (!m_TransientVerifier) { LogPrint (eLogError, "LeaseSet2: offline signature failed"); return; } } // outer ciphertext if (offset + 2 > len) return; uint16_t lenOuterCiphertext = bufbe16toh (buf + offset); offset += 2; const uint8_t * outerCiphertext = buf + offset; offset += lenOuterCiphertext; // verify signature bool verified = m_TransientVerifier ? VerifySignature (m_TransientVerifier, buf, len, offset) : VerifySignature (blindedVerifier, buf, len, offset); SetIsValid (verified); // handle ciphertext if (verified && key && lenOuterCiphertext >= 32) { SetIsValid (false); // we must verify it again in Layer 2 if (blindedKeyType == key->GetBlindedSigType ()) { // verify blinding char date[9]; i2p::util::GetDateString (m_PublishedTimestamp, date); std::vector blinded (blindedKeyLen); key->GetBlindedKey (date, blinded.data ()); if (memcmp (blindedPublicKey, blinded.data (), blindedKeyLen)) { LogPrint (eLogError, "LeaseSet2: blinded public key doesn't match"); return; } } else { LogPrint (eLogError, "LeaseSet2: Unexpected blinded key type ", blindedKeyType, " instead ", key->GetBlindedSigType ()); return; } // outer key // outerInput = subcredential || publishedTimestamp uint8_t subcredential[36]; key->GetSubcredential (blindedPublicKey, blindedKeyLen, subcredential); memcpy (subcredential + 32, publishedTimestamp, 4); // outerSalt = outerCiphertext[0:32] // keys = HKDF(outerSalt, outerInput, "ELS2_L1K", 44) uint8_t keys[64]; // 44 bytes actual data i2p::crypto::HKDF (outerCiphertext, subcredential, 36, "ELS2_L1K", keys); // decrypt Layer 1 // outerKey = keys[0:31] // outerIV = keys[32:43] size_t lenOuterPlaintext = lenOuterCiphertext - 32; std::vector outerPlainText (lenOuterPlaintext); i2p::crypto::ChaCha20 (outerCiphertext + 32, lenOuterPlaintext, keys, keys + 32, outerPlainText.data ()); // inner key // innerInput = authCookie || subcredential || publishedTimestamp // innerSalt = innerCiphertext[0:32] // keys = HKDF(innerSalt, innerInput, "ELS2_L2K", 44) uint8_t innerInput[68]; size_t authDataLen = ExtractClientAuthData (outerPlainText.data (), lenOuterPlaintext, secret, subcredential, innerInput); if (authDataLen > 0) { memcpy (innerInput + 32, subcredential, 36); i2p::crypto::HKDF (outerPlainText.data () + 1 + authDataLen, innerInput, 68, "ELS2_L2K", keys); } else // no authData presented, innerInput = subcredential || publishedTimestamp // skip 1 byte flags i2p::crypto::HKDF (outerPlainText.data () + 1, subcredential, 36, "ELS2_L2K", keys); // no authCookie // decrypt Layer 2 // innerKey = keys[0:31] // innerIV = keys[32:43] size_t lenInnerPlaintext = lenOuterPlaintext - 32 - 1 - authDataLen; std::vector innerPlainText (lenInnerPlaintext); i2p::crypto::ChaCha20 (outerPlainText.data () + 32 + 1 + authDataLen, lenInnerPlaintext, keys, keys + 32, innerPlainText.data ()); if (innerPlainText[0] == NETDB_STORE_TYPE_STANDARD_LEASESET2 || innerPlainText[0] == NETDB_STORE_TYPE_META_LEASESET2) { // override store type and buffer m_StoreType = innerPlainText[0]; SetBuffer (innerPlainText.data () + 1, lenInnerPlaintext - 1); // parse and verify Layer 2 ReadFromBuffer (innerPlainText.data () + 1, lenInnerPlaintext - 1); } else LogPrint (eLogError, "LeaseSet2: unexpected LeaseSet type ", (int)innerPlainText[0], " inside encrypted LeaseSet"); } else { // we set actual length of encrypted buffer offset += m_TransientVerifier ? m_TransientVerifier->GetSignatureLen () : blindedVerifier->GetSignatureLen (); SetBufferLen (offset); } } // helper for ExtractClientAuthData static inline bool GetAuthCookie (const uint8_t * authClients, int numClients, const uint8_t * okm, uint8_t * authCookie) { // try to find clientCookie_i for clientID_i = okm[44:51] for (int i = 0; i < numClients; i++) { if (!memcmp (okm + 44, authClients + i*40, 8)) // clientID_i { // clientKey_i = okm[0:31] // clientIV_i = okm[32:43] i2p::crypto::ChaCha20 (authClients + i*40 + 8, 32, okm, okm + 32, authCookie); // clientCookie_i return true; } } return false; } size_t LeaseSet2::ExtractClientAuthData (const uint8_t * buf, size_t len, const uint8_t * secret, const uint8_t * subcredential, uint8_t * authCookie) const { size_t offset = 0; uint8_t flag = buf[offset]; offset++; // flag if (flag & 0x01) // client auth { if (!(flag & 0x0E)) // DH, bit 1-3 all zeroes { const uint8_t * ephemeralPublicKey = buf + offset; offset += 32; // ephemeralPublicKey uint16_t numClients = bufbe16toh (buf + offset); offset += 2; // clients const uint8_t * authClients = buf + offset; offset += numClients*40; // authClients if (offset > len) { LogPrint (eLogError, "LeaseSet2: Too many clients ", numClients, " in DH auth data"); return 0; } // calculate authCookie if (secret) { i2p::crypto::X25519Keys ck (secret, nullptr); // derive cpk_i from csk_i uint8_t authInput[100]; ck.Agree (ephemeralPublicKey, authInput); // sharedSecret is first 32 bytes of authInput memcpy (authInput + 32, ck.GetPublicKey (), 32); // cpk_i memcpy (authInput + 64, subcredential, 36); uint8_t okm[64]; // 52 actual data i2p::crypto::HKDF (ephemeralPublicKey, authInput, 100, "ELS2_XCA", okm); if (!GetAuthCookie (authClients, numClients, okm, authCookie)) LogPrint (eLogError, "LeaseSet2: Client cookie DH not found"); } else LogPrint (eLogError, "LeaseSet2: Can't calculate authCookie: csk_i is not provided"); } else if (flag & 0x02) // PSK, bit 1 is set to 1 { const uint8_t * authSalt = buf + offset; offset += 32; // authSalt uint16_t numClients = bufbe16toh (buf + offset); offset += 2; // clients const uint8_t * authClients = buf + offset; offset += numClients*40; // authClients if (offset > len) { LogPrint (eLogError, "LeaseSet2: Too many clients ", numClients, " in PSK auth data"); return 0; } // calculate authCookie if (secret) { uint8_t authInput[68]; memcpy (authInput, secret, 32); memcpy (authInput + 32, subcredential, 36); uint8_t okm[64]; // 52 actual data i2p::crypto::HKDF (authSalt, authInput, 68, "ELS2PSKA", okm); if (!GetAuthCookie (authClients, numClients, okm, authCookie)) LogPrint (eLogError, "LeaseSet2: Client cookie PSK not found"); } else LogPrint (eLogError, "LeaseSet2: Can't calculate authCookie: psk_i is not provided"); } else LogPrint (eLogError, "LeaseSet2: unknown client auth type ", (int)flag); } return offset - 1; } void LeaseSet2::Encrypt (const uint8_t * data, uint8_t * encrypted, BN_CTX * ctx) const { auto encryptor = m_Encryptor; // TODO: atomic if (encryptor) encryptor->Encrypt (data, encrypted, ctx, true); } uint64_t LeaseSet2::ExtractExpirationTimestamp (const uint8_t * buf, size_t len) const { uint64_t expiration = 0; ExtractPublishedTimestamp (buf, len, expiration); return expiration; } uint64_t LeaseSet2::ExtractPublishedTimestamp (const uint8_t * buf, size_t len, uint64_t& expiration) const { if (len < 8) return 0; if (m_StoreType == NETDB_STORE_TYPE_ENCRYPTED_LEASESET2) { // encrypted LS2 size_t offset = 0; uint16_t blindedKeyType = bufbe16toh (buf + offset); offset += 2; std::unique_ptr blindedVerifier (i2p::data::IdentityEx::CreateVerifier (blindedKeyType)); if (!blindedVerifier) return 0 ; auto blindedKeyLen = blindedVerifier->GetPublicKeyLen (); if (offset + blindedKeyLen + 6 >= len) return 0; offset += blindedKeyLen; uint32_t timestamp = bufbe32toh (buf + offset); offset += 4; uint16_t expires = bufbe16toh (buf + offset); offset += 2; expiration = (timestamp + expires)* 1000LL; return timestamp; } else { auto identity = GetIdentity (); if (!identity) return 0; size_t offset = identity->GetFullLen (); if (offset + 6 >= len) return 0; uint32_t timestamp = bufbe32toh (buf + offset); offset += 4; uint16_t expires = bufbe16toh (buf + offset); offset += 2; expiration = (timestamp + expires)* 1000LL; return timestamp; } } LocalLeaseSet::LocalLeaseSet (std::shared_ptr identity, const uint8_t * encryptionPublicKey, std::vector > tunnels): m_ExpirationTime (0), m_Identity (identity) { int num = tunnels.size (); if (num > MAX_NUM_LEASES) num = MAX_NUM_LEASES; // identity auto signingKeyLen = m_Identity->GetSigningPublicKeyLen (); m_BufferLen = m_Identity->GetFullLen () + 256 + signingKeyLen + 1 + num*LEASE_SIZE + m_Identity->GetSignatureLen (); m_Buffer = new uint8_t[m_BufferLen]; auto offset = m_Identity->ToBuffer (m_Buffer, m_BufferLen); memcpy (m_Buffer + offset, encryptionPublicKey, 256); offset += 256; memset (m_Buffer + offset, 0, signingKeyLen); offset += signingKeyLen; // num leases m_Buffer[offset] = num; offset++; // leases m_Leases = m_Buffer + offset; auto currentTime = i2p::util::GetMillisecondsSinceEpoch (); for (int i = 0; i < num; i++) { memcpy (m_Buffer + offset, tunnels[i]->GetNextIdentHash (), 32); offset += 32; // gateway id htobe32buf (m_Buffer + offset, tunnels[i]->GetNextTunnelID ()); offset += 4; // tunnel id uint64_t ts = tunnels[i]->GetCreationTime () + i2p::tunnel::TUNNEL_EXPIRATION_TIMEOUT - i2p::tunnel::TUNNEL_EXPIRATION_THRESHOLD; // 1 minute before expiration ts *= 1000; // in milliseconds if (ts > m_ExpirationTime) m_ExpirationTime = ts; // make sure leaseset is newer than previous, but adding some time to expiration date ts += (currentTime - tunnels[i]->GetCreationTime ()*1000LL)*2/i2p::tunnel::TUNNEL_EXPIRATION_TIMEOUT; // up to 2 secs htobe64buf (m_Buffer + offset, ts); offset += 8; // end date } // we don't sign it yet. must be signed later on } LocalLeaseSet::LocalLeaseSet (std::shared_ptr identity, const uint8_t * buf, size_t len): m_ExpirationTime (0), m_Identity (identity) { if (buf) { m_BufferLen = len; m_Buffer = new uint8_t[m_BufferLen]; memcpy (m_Buffer, buf, len); } else { m_Buffer = nullptr; m_BufferLen = 0; } } bool LocalLeaseSet::IsExpired () const { auto ts = i2p::util::GetMillisecondsSinceEpoch (); return ts > m_ExpirationTime; } bool LeaseSetBufferValidate(const uint8_t * ptr, size_t sz, uint64_t & expires) { IdentityEx ident(ptr, sz); size_t size = ident.GetFullLen (); if (size > sz) { LogPrint (eLogError, "LeaseSet: identity length ", size, " exceeds buffer size ", sz); return false; } // encryption key size += 256; // signing key (unused) size += ident.GetSigningPublicKeyLen (); uint8_t numLeases = ptr[size]; ++size; if (!numLeases || numLeases > MAX_NUM_LEASES) { LogPrint (eLogError, "LeaseSet: incorrect number of leases", (int)numLeases); return false; } const uint8_t * leases = ptr + size; expires = 0; /** find lease with the max expiration timestamp */ for (int i = 0; i < numLeases; i++) { leases += 36; // gateway + tunnel ID uint64_t endDate = bufbe64toh (leases); leases += 8; // end date if(endDate > expires) expires = endDate; } return ident.Verify(ptr, leases - ptr, leases); } LocalLeaseSet2::LocalLeaseSet2 (uint8_t storeType, const i2p::data::PrivateKeys& keys, const KeySections& encryptionKeys, std::vector > tunnels, bool isPublic, bool isPublishedEncrypted): LocalLeaseSet (keys.GetPublic (), nullptr, 0) { auto identity = keys.GetPublic (); // assume standard LS2 int num = tunnels.size (); if (num > MAX_NUM_LEASES) num = MAX_NUM_LEASES; size_t keySectionsLen = 0; for (const auto& it: encryptionKeys) keySectionsLen += 2/*key type*/ + 2/*key len*/ + it.keyLen/*key*/; m_BufferLen = identity->GetFullLen () + 4/*published*/ + 2/*expires*/ + 2/*flag*/ + 2/*properties len*/ + 1/*num keys*/ + keySectionsLen + 1/*num leases*/ + num*LEASE2_SIZE + keys.GetSignatureLen (); uint16_t flags = 0; if (keys.IsOfflineSignature ()) { flags |= LEASESET2_FLAG_OFFLINE_KEYS; m_BufferLen += keys.GetOfflineSignature ().size (); } if (isPublishedEncrypted) { flags |= LEASESET2_FLAG_PUBLISHED_ENCRYPTED; isPublic = true; } if (!isPublic) flags |= LEASESET2_FLAG_UNPUBLISHED_LEASESET; m_Buffer = new uint8_t[m_BufferLen + 1]; m_Buffer[0] = storeType; // LS2 header auto offset = identity->ToBuffer (m_Buffer + 1, m_BufferLen) + 1; auto timestamp = i2p::util::GetSecondsSinceEpoch (); htobe32buf (m_Buffer + offset, timestamp); offset += 4; // published timestamp (seconds) uint8_t * expiresBuf = m_Buffer + offset; offset += 2; // expires, fill later htobe16buf (m_Buffer + offset, flags); offset += 2; // flags if (keys.IsOfflineSignature ()) { // offline signature const auto& offlineSignature = keys.GetOfflineSignature (); memcpy (m_Buffer + offset, offlineSignature.data (), offlineSignature.size ()); offset += offlineSignature.size (); } htobe16buf (m_Buffer + offset, 0); offset += 2; // properties len // keys m_Buffer[offset] = encryptionKeys.size (); offset++; // 1 key for (const auto& it: encryptionKeys) { htobe16buf (m_Buffer + offset, it.keyType); offset += 2; // key type htobe16buf (m_Buffer + offset, it.keyLen); offset += 2; // key len memcpy (m_Buffer + offset, it.encryptionPublicKey, it.keyLen); offset += it.keyLen; // key } // leases uint32_t expirationTime = 0; // in seconds m_Buffer[offset] = num; offset++; // num leases for (int i = 0; i < num; i++) { memcpy (m_Buffer + offset, tunnels[i]->GetNextIdentHash (), 32); offset += 32; // gateway id htobe32buf (m_Buffer + offset, tunnels[i]->GetNextTunnelID ()); offset += 4; // tunnel id auto ts = tunnels[i]->GetCreationTime () + i2p::tunnel::TUNNEL_EXPIRATION_TIMEOUT - i2p::tunnel::TUNNEL_EXPIRATION_THRESHOLD; // in seconds, 1 minute before expiration if (ts > expirationTime) expirationTime = ts; htobe32buf (m_Buffer + offset, ts); offset += 4; // end date } // update expiration SetExpirationTime (expirationTime*1000LL); auto expires = expirationTime - timestamp; htobe16buf (expiresBuf, expires > 0 ? expires : 0); // sign keys.Sign (m_Buffer, offset, m_Buffer + offset); // LS + leading store type } LocalLeaseSet2::LocalLeaseSet2 (uint8_t storeType, std::shared_ptr identity, const uint8_t * buf, size_t len): LocalLeaseSet (identity, nullptr, 0) { m_BufferLen = len; m_Buffer = new uint8_t[m_BufferLen + 1]; memcpy (m_Buffer + 1, buf, len); m_Buffer[0] = storeType; } LocalEncryptedLeaseSet2::LocalEncryptedLeaseSet2 (std::shared_ptr ls, const i2p::data::PrivateKeys& keys, int authType, std::shared_ptr > authKeys): LocalLeaseSet2 (ls->GetIdentity ()), m_InnerLeaseSet (ls) { size_t lenInnerPlaintext = ls->GetBufferLen () + 1, lenOuterPlaintext = lenInnerPlaintext + 32 + 1; uint8_t layer1Flags = 0; if (authKeys) { if (authType == ENCRYPTED_LEASESET_AUTH_TYPE_DH) layer1Flags |= 0x01; // DH, authentication scheme 0, auth bit 1 else if (authType == ENCRYPTED_LEASESET_AUTH_TYPE_PSK) layer1Flags |= 0x03; // PSK, authentication scheme 1, auth bit 1 if (layer1Flags) lenOuterPlaintext += 32 + 2 + authKeys->size ()*40; // auth data len } size_t lenOuterCiphertext = lenOuterPlaintext + 32; m_BufferLen = 2/*blinded sig type*/ + 32/*blinded pub key*/ + 4/*published*/ + 2/*expires*/ + 2/*flags*/ + 2/*lenOuterCiphertext*/ + lenOuterCiphertext + 64/*signature*/; m_Buffer = new uint8_t[m_BufferLen + 1]; m_Buffer[0] = NETDB_STORE_TYPE_ENCRYPTED_LEASESET2; BlindedPublicKey blindedKey (ls->GetIdentity ()); auto timestamp = i2p::util::GetSecondsSinceEpoch (); char date[9]; i2p::util::GetDateString (timestamp, date); uint8_t blindedPriv[64], blindedPub[128]; // 64 and 128 max size_t publicKeyLen = blindedKey.BlindPrivateKey (keys.GetSigningPrivateKey (), date, blindedPriv, blindedPub); std::unique_ptr blindedSigner (i2p::data::PrivateKeys::CreateSigner (blindedKey.GetBlindedSigType (), blindedPriv)); auto offset = 1; htobe16buf (m_Buffer + offset, blindedKey.GetBlindedSigType ()); offset += 2; // Blinded Public Key Sig Type memcpy (m_Buffer + offset, blindedPub, publicKeyLen); offset += publicKeyLen; // Blinded Public Key htobe32buf (m_Buffer + offset, timestamp); offset += 4; // published timestamp (seconds) auto nextMidnight = (timestamp/86400LL + 1)*86400LL; // 86400 = 24*3600 seconds auto expirationTime = ls->GetExpirationTime ()/1000LL; if (expirationTime > nextMidnight) expirationTime = nextMidnight; SetExpirationTime (expirationTime*1000LL); htobe16buf (m_Buffer + offset, expirationTime > timestamp ? expirationTime - timestamp : 0); offset += 2; // expires uint16_t flags = 0; htobe16buf (m_Buffer + offset, flags); offset += 2; // flags htobe16buf (m_Buffer + offset, lenOuterCiphertext); offset += 2; // lenOuterCiphertext // outerChipherText // Layer 1 uint8_t subcredential[36]; blindedKey.GetSubcredential (blindedPub, 32, subcredential); htobe32buf (subcredential + 32, timestamp); // outerInput = subcredential || publishedTimestamp // keys = HKDF(outerSalt, outerInput, "ELS2_L1K", 44) uint8_t keys1[64]; // 44 bytes actual data RAND_bytes (m_Buffer + offset, 32); // outerSalt = CSRNG(32) i2p::crypto::HKDF (m_Buffer + offset, subcredential, 36, "ELS2_L1K", keys1); offset += 32; // outerSalt uint8_t * outerPlainText = m_Buffer + offset; m_Buffer[offset] = layer1Flags; offset++; // layer 1 flags // auth data uint8_t innerInput[68]; // authCookie || subcredential || publishedTimestamp if (layer1Flags) { RAND_bytes (innerInput, 32); // authCookie CreateClientAuthData (subcredential, authType, authKeys, innerInput, m_Buffer + offset); offset += 32 + 2 + authKeys->size ()*40; // auth clients } // Layer 2 // keys = HKDF(outerSalt, outerInput, "ELS2_L2K", 44) uint8_t keys2[64]; // 44 bytes actual data RAND_bytes (m_Buffer + offset, 32); // innerSalt = CSRNG(32) if (layer1Flags) { memcpy (innerInput + 32, subcredential, 36); // + subcredential || publishedTimestamp i2p::crypto::HKDF (m_Buffer + offset, innerInput, 68, "ELS2_L2K", keys2); } else i2p::crypto::HKDF (m_Buffer + offset, subcredential, 36, "ELS2_L2K", keys2); // no authCookie offset += 32; // innerSalt m_Buffer[offset] = ls->GetStoreType (); memcpy (m_Buffer + offset + 1, ls->GetBuffer (), ls->GetBufferLen ()); i2p::crypto::ChaCha20 (m_Buffer + offset, lenInnerPlaintext, keys2, keys2 + 32, m_Buffer + offset); // encrypt Layer 2 offset += lenInnerPlaintext; i2p::crypto::ChaCha20 (outerPlainText, lenOuterPlaintext, keys1, keys1 + 32, outerPlainText); // encrypt Layer 1 // signature blindedSigner->Sign (m_Buffer, offset, m_Buffer + offset); // store hash m_StoreHash = blindedKey.GetStoreHash (date); } LocalEncryptedLeaseSet2::LocalEncryptedLeaseSet2 (std::shared_ptr identity, const uint8_t * buf, size_t len): LocalLeaseSet2 (NETDB_STORE_TYPE_ENCRYPTED_LEASESET2, identity, buf, len) { // fill inner LeaseSet2 auto blindedKey = std::make_shared(identity); i2p::data::LeaseSet2 ls (buf, len, blindedKey); // inner layer if (ls.IsValid ()) { m_InnerLeaseSet = std::make_shared(ls.GetStoreType (), identity, ls.GetBuffer (), ls.GetBufferLen ()); m_StoreHash = blindedKey->GetStoreHash (); } else LogPrint (eLogError, "LeaseSet2: couldn't extract inner layer"); } void LocalEncryptedLeaseSet2::CreateClientAuthData (const uint8_t * subcredential, int authType, std::shared_ptr > authKeys, const uint8_t * authCookie, uint8_t * authData) const { if (authType == ENCRYPTED_LEASESET_AUTH_TYPE_DH) { i2p::crypto::X25519Keys ek; ek.GenerateKeys (); // esk and epk memcpy (authData, ek.GetPublicKey (), 32); authData += 32; // epk htobe16buf (authData, authKeys->size ()); authData += 2; // num clients uint8_t authInput[100]; // sharedSecret || cpk_i || subcredential || publishedTimestamp memcpy (authInput + 64, subcredential, 36); for (auto& it: *authKeys) { ek.Agree (it, authInput); // sharedSecret = DH(esk, cpk_i) memcpy (authInput + 32, it, 32); uint8_t okm[64]; // 52 actual data i2p::crypto::HKDF (ek.GetPublicKey (), authInput, 100, "ELS2_XCA", okm); memcpy (authData, okm + 44, 8); authData += 8; // clientID_i i2p::crypto::ChaCha20 (authCookie, 32, okm, okm + 32, authData); authData += 32; // clientCookie_i } } else // assume PSK { uint8_t authSalt[32]; RAND_bytes (authSalt, 32); memcpy (authData, authSalt, 32); authData += 32; // authSalt htobe16buf (authData, authKeys->size ()); authData += 2; // num clients uint8_t authInput[68]; // authInput = psk_i || subcredential || publishedTimestamp memcpy (authInput + 32, subcredential, 36); for (auto& it: *authKeys) { memcpy (authInput, it, 32); uint8_t okm[64]; // 52 actual data i2p::crypto::HKDF (authSalt, authInput, 68, "ELS2PSKA", okm); memcpy (authData, okm + 44, 8); authData += 8; // clientID_i i2p::crypto::ChaCha20 (authCookie, 32, okm, okm + 32, authData); authData += 32; // clientCookie_i } } } } }