mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-11-03 03:40:12 +00:00
901595b10f
Use `from __future__ import annotations avoid `dict` and `list` cause "TypeErro: 'type' object is not subscriptable". Refer to the following Stack Overflow discussions for more information: 1. https://stackoverflow.com/questions/75202610/typeerror-type-object-is-not-subscriptable-python 2. https://stackoverflow.com/questions/59101121/type-hint-for-a-dict-gives-typeerror-type-object-is-not-subscriptable
89 lines
2.8 KiB
Python
89 lines
2.8 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import os
|
|
import uuid
|
|
|
|
import requests
|
|
from Crypto.Cipher import AES
|
|
|
|
from ..typing import Any, CreateResult
|
|
from .base_provider import BaseProvider
|
|
|
|
|
|
class GetGpt(BaseProvider):
|
|
url = 'https://chat.getgpt.world/'
|
|
supports_stream = True
|
|
working = True
|
|
supports_gpt_35_turbo = True
|
|
|
|
@staticmethod
|
|
def create_completion(
|
|
model: str,
|
|
messages: list[dict[str, str]],
|
|
stream: bool, **kwargs: Any) -> CreateResult:
|
|
|
|
headers = {
|
|
'Content-Type' : 'application/json',
|
|
'Referer' : 'https://chat.getgpt.world/',
|
|
'user-agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',
|
|
}
|
|
|
|
data = json.dumps(
|
|
{
|
|
'messages' : messages,
|
|
'frequency_penalty' : kwargs.get('frequency_penalty', 0),
|
|
'max_tokens' : kwargs.get('max_tokens', 4000),
|
|
'model' : 'gpt-3.5-turbo',
|
|
'presence_penalty' : kwargs.get('presence_penalty', 0),
|
|
'temperature' : kwargs.get('temperature', 1),
|
|
'top_p' : kwargs.get('top_p', 1),
|
|
'stream' : True,
|
|
'uuid' : str(uuid.uuid4())
|
|
}
|
|
)
|
|
|
|
res = requests.post('https://chat.getgpt.world/api/chat/stream',
|
|
headers=headers, json={'signature': _encrypt(data)}, stream=True)
|
|
|
|
res.raise_for_status()
|
|
for line in res.iter_lines():
|
|
if b'content' in line:
|
|
line_json = json.loads(line.decode('utf-8').split('data: ')[1])
|
|
yield (line_json['choices'][0]['delta']['content'])
|
|
|
|
@classmethod
|
|
@property
|
|
def params(cls):
|
|
params = [
|
|
('model', 'str'),
|
|
('messages', 'list[dict[str, str]]'),
|
|
('stream', 'bool'),
|
|
('temperature', 'float'),
|
|
('presence_penalty', 'int'),
|
|
('frequency_penalty', 'int'),
|
|
('top_p', 'int'),
|
|
('max_tokens', 'int'),
|
|
]
|
|
param = ', '.join([': '.join(p) for p in params])
|
|
return f'g4f.provider.{cls.__name__} supports: ({param})'
|
|
|
|
|
|
def _encrypt(e: str):
|
|
t = os.urandom(8).hex().encode('utf-8')
|
|
n = os.urandom(8).hex().encode('utf-8')
|
|
r = e.encode('utf-8')
|
|
|
|
cipher = AES.new(t, AES.MODE_CBC, n)
|
|
ciphertext = cipher.encrypt(_pad_data(r))
|
|
|
|
return ciphertext.hex() + t.decode('utf-8') + n.decode('utf-8')
|
|
|
|
|
|
def _pad_data(data: bytes) -> bytes:
|
|
block_size = AES.block_size
|
|
padding_size = block_size - len(data) % block_size
|
|
padding = bytes([padding_size] * padding_size)
|
|
|
|
return data + padding
|