gpt4free/g4f/Provider/Blackbox.py

157 lines
5.8 KiB
Python

from __future__ import annotations
import uuid
import secrets
import re
import base64
from aiohttp import ClientSession
from typing import AsyncGenerator, Optional
from ..typing import AsyncResult, Messages, ImageType
from ..image import to_data_uri, ImageResponse
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://www.blackbox.ai"
working = True
default_model = 'blackbox'
models = [
default_model,
"gemini-1.5-flash",
"llama-3.1-8b",
'llama-3.1-70b',
'llama-3.1-405b',
'ImageGeneration',
]
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
}
agent_mode_map = {
'ImageGeneration': {"mode": True, "id": "ImageGenerationLV45LJp", "name": "Image Generation"},
}
model_id_map = {
"blackbox": {},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"}
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@classmethod
async def download_image_to_base64_url(cls, url: str) -> str:
async with ClientSession() as session:
async with session.get(url) as response:
image_data = await response.read()
base64_data = base64.b64encode(image_data).decode('utf-8')
mime_type = response.headers.get('Content-Type', 'image/jpeg')
return f"data:{mime_type};base64,{base64_data}"
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: Optional[str] = None,
image: Optional[ImageType] = None,
image_name: Optional[str] = None,
**kwargs
) -> AsyncGenerator[AsyncResult, None]:
if image is not None:
messages[-1]["data"] = {
"fileText": image_name,
"imageBase64": to_data_uri(image),
"title": str(uuid.uuid4())
}
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36",
"Accept": "*/*",
"Accept-Language": "en-US,en;q=0.5",
"Accept-Encoding": "gzip, deflate, br",
"Referer": cls.url,
"Content-Type": "application/json",
"Origin": cls.url,
"DNT": "1",
"Sec-GPC": "1",
"Alt-Used": "www.blackbox.ai",
"Connection": "keep-alive",
}
async with ClientSession(headers=headers) as session:
random_id = secrets.token_hex(16)
random_user_id = str(uuid.uuid4())
model = cls.get_model(model) # Resolve the model alias
data = {
"messages": messages,
"id": random_id,
"userId": random_user_id,
"codeModelMode": True,
"agentMode": cls.agent_mode_map.get(model, {}),
"trendingAgentMode": {},
"isMicMode": False,
"isChromeExt": False,
"playgroundMode": False,
"webSearchMode": False,
"userSystemPrompt": "",
"githubToken": None,
"trendingAgentModel": cls.model_id_map.get(model, {}),
"maxTokens": None
}
async with session.post(
f"{cls.url}/api/chat", json=data, proxy=proxy
) as response:
response.raise_for_status()
full_response = ""
buffer = ""
image_base64_url = None
async for chunk in response.content.iter_any():
if chunk:
decoded_chunk = chunk.decode()
cleaned_chunk = re.sub(r'\$@\$.+?\$@\$|\$@\$', '', decoded_chunk)
buffer += cleaned_chunk
# Check if there's a complete image line in the buffer
image_match = re.search(r'!\[Generated Image\]\((https?://[^\s\)]+)\)', buffer)
if image_match:
image_url = image_match.group(1)
# Download the image and convert to base64 URL
image_base64_url = await cls.download_image_to_base64_url(image_url)
# Remove the image line from the buffer
buffer = re.sub(r'!\[Generated Image\]\(https?://[^\s\)]+\)', '', buffer)
# Send text line by line
lines = buffer.split('\n')
for line in lines[:-1]:
if line.strip():
full_response += line + '\n'
yield line + '\n'
buffer = lines[-1] # Keep the last incomplete line in the buffer
# Send the remaining buffer if it's not empty
if buffer.strip():
full_response += buffer
yield buffer
# If an image was found, send it as ImageResponse
if image_base64_url:
alt_text = "Generated Image"
image_response = ImageResponse(image_base64_url, alt=alt_text)
yield image_response