gpt4free/g4f/providers/base_provider.py
Heiner Lohaus ec51e9c764 Fix HuggingChat and PerplexityLabs and add HuggingFace provider
Add more models and image generation in You provider
Use You as second default image provider
2024-03-11 02:41:59 +01:00

280 lines
9.0 KiB
Python

from __future__ import annotations
import sys
import asyncio
from asyncio import AbstractEventLoop
from concurrent.futures import ThreadPoolExecutor
from abc import abstractmethod
from inspect import signature, Parameter
from ..typing import CreateResult, AsyncResult, Messages, Union
from .types import BaseProvider
from ..errors import NestAsyncioError, ModelNotSupportedError
from .. import debug
if sys.version_info < (3, 10):
NoneType = type(None)
else:
from types import NoneType
# Set Windows event loop policy for better compatibility with asyncio and curl_cffi
if sys.platform == 'win32':
if isinstance(asyncio.get_event_loop_policy(), asyncio.WindowsProactorEventLoopPolicy):
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
def get_running_loop() -> Union[AbstractEventLoop, None]:
try:
loop = asyncio.get_running_loop()
if not hasattr(loop.__class__, "_nest_patched"):
raise NestAsyncioError(
'Use "create_async" instead of "create" function in a running event loop. Or use "nest_asyncio" package.'
)
return loop
except RuntimeError:
pass
class AbstractProvider(BaseProvider):
"""
Abstract class for providing asynchronous functionality to derived classes.
"""
@classmethod
async def create_async(
cls,
model: str,
messages: Messages,
*,
loop: AbstractEventLoop = None,
executor: ThreadPoolExecutor = None,
**kwargs
) -> str:
"""
Asynchronously creates a result based on the given model and messages.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
executor (ThreadPoolExecutor, optional): The executor for running async tasks. Defaults to None.
**kwargs: Additional keyword arguments.
Returns:
str: The created result as a string.
"""
loop = loop or asyncio.get_running_loop()
def create_func() -> str:
return "".join(cls.create_completion(model, messages, False, **kwargs))
return await asyncio.wait_for(
loop.run_in_executor(executor, create_func),
timeout=kwargs.get("timeout")
)
@classmethod
@property
def params(cls) -> str:
"""
Returns the parameters supported by the provider.
Args:
cls (type): The class on which this property is called.
Returns:
str: A string listing the supported parameters.
"""
sig = signature(
cls.create_async_generator if issubclass(cls, AsyncGeneratorProvider) else
cls.create_async if issubclass(cls, AsyncProvider) else
cls.create_completion
)
def get_type_name(annotation: type) -> str:
return annotation.__name__ if hasattr(annotation, "__name__") else str(annotation)
args = ""
for name, param in sig.parameters.items():
if name in ("self", "kwargs") or (name == "stream" and not cls.supports_stream):
continue
args += f"\n {name}"
args += f": {get_type_name(param.annotation)}" if param.annotation is not Parameter.empty else ""
args += f' = "{param.default}"' if param.default == "" else f" = {param.default}" if param.default is not Parameter.empty else ""
return f"g4f.Provider.{cls.__name__} supports: ({args}\n)"
class AsyncProvider(AbstractProvider):
"""
Provides asynchronous functionality for creating completions.
"""
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool = False,
**kwargs
) -> CreateResult:
"""
Creates a completion result synchronously.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
stream (bool): Indicates whether to stream the results. Defaults to False.
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
**kwargs: Additional keyword arguments.
Returns:
CreateResult: The result of the completion creation.
"""
get_running_loop()
yield asyncio.run(cls.create_async(model, messages, **kwargs))
@staticmethod
@abstractmethod
async def create_async(
model: str,
messages: Messages,
**kwargs
) -> str:
"""
Abstract method for creating asynchronous results.
Args:
model (str): The model to use for creation.
messages (Messages): The messages to process.
**kwargs: Additional keyword arguments.
Raises:
NotImplementedError: If this method is not overridden in derived classes.
Returns:
str: The created result as a string.
"""
raise NotImplementedError()
class AsyncGeneratorProvider(AsyncProvider):
"""
Provides asynchronous generator functionality for streaming results.
"""
supports_stream = True
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool = True,
**kwargs
) -> CreateResult:
"""
Creates a streaming completion result synchronously.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
stream (bool): Indicates whether to stream the results. Defaults to True.
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
**kwargs: Additional keyword arguments.
Returns:
CreateResult: The result of the streaming completion creation.
"""
loop = get_running_loop()
new_loop = False
if not loop:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
new_loop = True
generator = cls.create_async_generator(model, messages, stream=stream, **kwargs)
gen = generator.__aiter__()
# Fix for RuntimeError: async generator ignored GeneratorExit
async def await_callback(callback):
return await callback()
try:
while True:
yield loop.run_until_complete(await_callback(gen.__anext__))
except StopAsyncIteration:
...
# Fix for: ResourceWarning: unclosed event loop
finally:
if new_loop:
loop.close()
asyncio.set_event_loop(None)
@classmethod
async def create_async(
cls,
model: str,
messages: Messages,
**kwargs
) -> str:
"""
Asynchronously creates a result from a generator.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
**kwargs: Additional keyword arguments.
Returns:
str: The created result as a string.
"""
return "".join([
chunk async for chunk in cls.create_async_generator(model, messages, stream=False, **kwargs)
if not isinstance(chunk, Exception)
])
@staticmethod
@abstractmethod
async def create_async_generator(
model: str,
messages: Messages,
stream: bool = True,
**kwargs
) -> AsyncResult:
"""
Abstract method for creating an asynchronous generator.
Args:
model (str): The model to use for creation.
messages (Messages): The messages to process.
stream (bool): Indicates whether to stream the results. Defaults to True.
**kwargs: Additional keyword arguments.
Raises:
NotImplementedError: If this method is not overridden in derived classes.
Returns:
AsyncResult: An asynchronous generator yielding results.
"""
raise NotImplementedError()
class ProviderModelMixin:
default_model: str
models: list[str] = []
model_aliases: dict[str, str] = {}
@classmethod
def get_models(cls) -> list[str]:
return cls.models
@classmethod
def get_model(cls, model: str) -> str:
if not model and cls.default_model is not None:
model = cls.default_model
elif model in cls.model_aliases:
model = cls.model_aliases[model]
elif model not in cls.get_models() and cls.models:
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__}")
debug.last_model = model
return model