mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-11-07 03:20:23 +00:00
5756586cde
Add doctypes to many functions Add file upload for text files Add alternative url to FreeChatgpt Add webp to allowed image types
157 lines
5.0 KiB
Python
157 lines
5.0 KiB
Python
"""
|
|
Module to handle image uploading and processing for Bing AI integrations.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
import string
|
|
import random
|
|
import json
|
|
import math
|
|
from aiohttp import ClientSession
|
|
from PIL import Image
|
|
|
|
from ...typing import ImageType, Tuple
|
|
from ...image import to_image, process_image, to_base64, ImageResponse
|
|
|
|
IMAGE_CONFIG = {
|
|
"maxImagePixels": 360000,
|
|
"imageCompressionRate": 0.7,
|
|
"enableFaceBlurDebug": False,
|
|
}
|
|
|
|
async def upload_image(
|
|
session: ClientSession,
|
|
image_data: ImageType,
|
|
tone: str,
|
|
proxy: str = None
|
|
) -> ImageResponse:
|
|
"""
|
|
Uploads an image to Bing's AI service and returns the image response.
|
|
|
|
Args:
|
|
session (ClientSession): The active session.
|
|
image_data (bytes): The image data to be uploaded.
|
|
tone (str): The tone of the conversation.
|
|
proxy (str, optional): Proxy if any. Defaults to None.
|
|
|
|
Raises:
|
|
RuntimeError: If the image upload fails.
|
|
|
|
Returns:
|
|
ImageResponse: The response from the image upload.
|
|
"""
|
|
image = to_image(image_data)
|
|
new_width, new_height = calculate_new_dimensions(image)
|
|
processed_img = process_image(image, new_width, new_height)
|
|
img_binary_data = to_base64(processed_img, IMAGE_CONFIG['imageCompressionRate'])
|
|
|
|
data, boundary = build_image_upload_payload(img_binary_data, tone)
|
|
headers = prepare_headers(session, boundary)
|
|
|
|
async with session.post("https://www.bing.com/images/kblob", data=data, headers=headers, proxy=proxy) as response:
|
|
if response.status != 200:
|
|
raise RuntimeError("Failed to upload image.")
|
|
return parse_image_response(await response.json())
|
|
|
|
def calculate_new_dimensions(image: Image.Image) -> Tuple[int, int]:
|
|
"""
|
|
Calculates the new dimensions for the image based on the maximum allowed pixels.
|
|
|
|
Args:
|
|
image (Image): The PIL Image object.
|
|
|
|
Returns:
|
|
Tuple[int, int]: The new width and height for the image.
|
|
"""
|
|
width, height = image.size
|
|
max_image_pixels = IMAGE_CONFIG['maxImagePixels']
|
|
if max_image_pixels / (width * height) < 1:
|
|
scale_factor = math.sqrt(max_image_pixels / (width * height))
|
|
return int(width * scale_factor), int(height * scale_factor)
|
|
return width, height
|
|
|
|
def build_image_upload_payload(image_bin: str, tone: str) -> Tuple[str, str]:
|
|
"""
|
|
Builds the payload for image uploading.
|
|
|
|
Args:
|
|
image_bin (str): Base64 encoded image binary data.
|
|
tone (str): The tone of the conversation.
|
|
|
|
Returns:
|
|
Tuple[str, str]: The data and boundary for the payload.
|
|
"""
|
|
boundary = "----WebKitFormBoundary" + ''.join(random.choices(string.ascii_letters + string.digits, k=16))
|
|
data = f"--{boundary}\r\n" \
|
|
f"Content-Disposition: form-data; name=\"knowledgeRequest\"\r\n\r\n" \
|
|
f"{json.dumps(build_knowledge_request(tone), ensure_ascii=False)}\r\n" \
|
|
f"--{boundary}\r\n" \
|
|
f"Content-Disposition: form-data; name=\"imageBase64\"\r\n\r\n" \
|
|
f"{image_bin}\r\n" \
|
|
f"--{boundary}--\r\n"
|
|
return data, boundary
|
|
|
|
def build_knowledge_request(tone: str) -> dict:
|
|
"""
|
|
Builds the knowledge request payload.
|
|
|
|
Args:
|
|
tone (str): The tone of the conversation.
|
|
|
|
Returns:
|
|
dict: The knowledge request payload.
|
|
"""
|
|
return {
|
|
'invokedSkills': ["ImageById"],
|
|
'subscriptionId': "Bing.Chat.Multimodal",
|
|
'invokedSkillsRequestData': {
|
|
'enableFaceBlur': True
|
|
},
|
|
'convoData': {
|
|
'convoid': "",
|
|
'convotone': tone
|
|
}
|
|
}
|
|
|
|
def prepare_headers(session: ClientSession, boundary: str) -> dict:
|
|
"""
|
|
Prepares the headers for the image upload request.
|
|
|
|
Args:
|
|
session (ClientSession): The active session.
|
|
boundary (str): The boundary string for the multipart/form-data.
|
|
|
|
Returns:
|
|
dict: The headers for the request.
|
|
"""
|
|
headers = session.headers.copy()
|
|
headers["Content-Type"] = f'multipart/form-data; boundary={boundary}'
|
|
headers["Referer"] = 'https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx'
|
|
headers["Origin"] = 'https://www.bing.com'
|
|
return headers
|
|
|
|
def parse_image_response(response: dict) -> ImageResponse:
|
|
"""
|
|
Parses the response from the image upload.
|
|
|
|
Args:
|
|
response (dict): The response dictionary.
|
|
|
|
Raises:
|
|
RuntimeError: If parsing the image info fails.
|
|
|
|
Returns:
|
|
ImageResponse: The parsed image response.
|
|
"""
|
|
if not response.get('blobId'):
|
|
raise RuntimeError("Failed to parse image info.")
|
|
|
|
result = {'bcid': response.get('blobId', ""), 'blurredBcid': response.get('processedBlobId', "")}
|
|
result["imageUrl"] = f"https://www.bing.com/images/blob?bcid={result['blurredBcid'] or result['bcid']}"
|
|
|
|
result['originalImageUrl'] = (
|
|
f"https://www.bing.com/images/blob?bcid={result['blurredBcid']}"
|
|
if IMAGE_CONFIG["enableFaceBlurDebug"] else
|
|
f"https://www.bing.com/images/blob?bcid={result['bcid']}"
|
|
)
|
|
return ImageResponse(result["imageUrl"], "", result) |