mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-11-19 03:25:32 +00:00
~
This commit is contained in:
parent
da50e84dfc
commit
23646b6680
@ -1,104 +1,106 @@
|
|||||||
import json
|
import json
|
||||||
|
import time
|
||||||
import random
|
import random
|
||||||
import string
|
import string
|
||||||
import time
|
|
||||||
from typing import Any
|
|
||||||
import requests
|
import requests
|
||||||
from flask import Flask, request
|
|
||||||
from flask_cors import CORS
|
from typing import Any
|
||||||
|
from flask import Flask, request
|
||||||
|
from flask_cors import CORS
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
from g4f import ChatCompletion
|
from g4f import ChatCompletion
|
||||||
|
|
||||||
app = Flask(__name__)
|
app = Flask(__name__)
|
||||||
CORS(app)
|
CORS(app)
|
||||||
|
|
||||||
|
@app.route('/chat/completions', methods=['POST'])
|
||||||
@app.route("/chat/completions", methods=["POST"])
|
|
||||||
def chat_completions():
|
def chat_completions():
|
||||||
model = request.get_json().get("model", "gpt-3.5-turbo")
|
model = request.get_json().get('model', 'gpt-3.5-turbo')
|
||||||
stream = request.get_json().get("stream", False)
|
stream = request.get_json().get('stream', False)
|
||||||
messages = request.get_json().get("messages")
|
messages = request.get_json().get('messages')
|
||||||
|
|
||||||
response = ChatCompletion.create(model=model, stream=stream, messages=messages)
|
response = ChatCompletion.create(model = model,
|
||||||
|
stream = stream, messages = messages)
|
||||||
|
|
||||||
completion_id = "".join(random.choices(string.ascii_letters + string.digits, k=28))
|
completion_id = ''.join(random.choices(string.ascii_letters + string.digits, k=28))
|
||||||
completion_timestamp = int(time.time())
|
completion_timestamp = int(time.time())
|
||||||
|
|
||||||
if not stream:
|
if not stream:
|
||||||
return {
|
return {
|
||||||
"id": f"chatcmpl-{completion_id}",
|
'id': f'chatcmpl-{completion_id}',
|
||||||
"object": "chat.completion",
|
'object': 'chat.completion',
|
||||||
"created": completion_timestamp,
|
'created': completion_timestamp,
|
||||||
"model": model,
|
'model': model,
|
||||||
"choices": [
|
'choices': [
|
||||||
{
|
{
|
||||||
"index": 0,
|
'index': 0,
|
||||||
"message": {
|
'message': {
|
||||||
"role": "assistant",
|
'role': 'assistant',
|
||||||
"content": response,
|
'content': response,
|
||||||
},
|
},
|
||||||
"finish_reason": "stop",
|
'finish_reason': 'stop',
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"usage": {
|
'usage': {
|
||||||
"prompt_tokens": None,
|
'prompt_tokens': None,
|
||||||
"completion_tokens": None,
|
'completion_tokens': None,
|
||||||
"total_tokens": None,
|
'total_tokens': None,
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
def streaming():
|
def streaming():
|
||||||
for chunk in response:
|
for chunk in response:
|
||||||
completion_data = {
|
completion_data = {
|
||||||
"id": f"chatcmpl-{completion_id}",
|
'id': f'chatcmpl-{completion_id}',
|
||||||
"object": "chat.completion.chunk",
|
'object': 'chat.completion.chunk',
|
||||||
"created": completion_timestamp,
|
'created': completion_timestamp,
|
||||||
"model": model,
|
'model': model,
|
||||||
"choices": [
|
'choices': [
|
||||||
{
|
{
|
||||||
"index": 0,
|
'index': 0,
|
||||||
"delta": {
|
'delta': {
|
||||||
"content": chunk,
|
'content': chunk,
|
||||||
},
|
},
|
||||||
"finish_reason": None,
|
'finish_reason': None,
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
}
|
}
|
||||||
|
|
||||||
content = json.dumps(completion_data, separators=(",", ":"))
|
content = json.dumps(completion_data, separators=(',', ':'))
|
||||||
yield f"data: {content}\n\n"
|
yield f'data: {content}\n\n'
|
||||||
time.sleep(0.1)
|
time.sleep(0.1)
|
||||||
|
|
||||||
end_completion_data: dict[str, Any] = {
|
end_completion_data: dict[str, Any] = {
|
||||||
"id": f"chatcmpl-{completion_id}",
|
'id': f'chatcmpl-{completion_id}',
|
||||||
"object": "chat.completion.chunk",
|
'object': 'chat.completion.chunk',
|
||||||
"created": completion_timestamp,
|
'created': completion_timestamp,
|
||||||
"model": model,
|
'model': model,
|
||||||
"choices": [
|
'choices': [
|
||||||
{
|
{
|
||||||
"index": 0,
|
'index': 0,
|
||||||
"delta": {},
|
'delta': {},
|
||||||
"finish_reason": "stop",
|
'finish_reason': 'stop',
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
}
|
}
|
||||||
content = json.dumps(end_completion_data, separators=(",", ":"))
|
content = json.dumps(end_completion_data, separators=(',', ':'))
|
||||||
yield f"data: {content}\n\n"
|
yield f'data: {content}\n\n'
|
||||||
|
|
||||||
return app.response_class(streaming(), mimetype="text/event-stream")
|
return app.response_class(streaming(), mimetype='text/event-stream')
|
||||||
|
|
||||||
|
|
||||||
#Get the embedding from huggingface
|
# Get the embedding from huggingface
|
||||||
def get_embedding(input_text, token):
|
def get_embedding(input_text, token):
|
||||||
huggingface_token = token
|
huggingface_token = token
|
||||||
embedding_model = "sentence-transformers/all-mpnet-base-v2"
|
embedding_model = 'sentence-transformers/all-mpnet-base-v2'
|
||||||
max_token_length = 500
|
max_token_length = 500
|
||||||
|
|
||||||
# Load the tokenizer for the "all-mpnet-base-v2" model
|
# Load the tokenizer for the 'all-mpnet-base-v2' model
|
||||||
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
|
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
|
||||||
# Tokenize the text and split the tokens into chunks of 500 tokens each
|
# Tokenize the text and split the tokens into chunks of 500 tokens each
|
||||||
tokens = tokenizer.tokenize(input_text)
|
tokens = tokenizer.tokenize(input_text)
|
||||||
token_chunks = [tokens[i:i + max_token_length] for i in range(0, len(tokens), max_token_length)]
|
token_chunks = [tokens[i:i + max_token_length]
|
||||||
|
for i in range(0, len(tokens), max_token_length)]
|
||||||
|
|
||||||
# Initialize an empty list
|
# Initialize an empty list
|
||||||
embeddings = []
|
embeddings = []
|
||||||
@ -109,52 +111,53 @@ def get_embedding(input_text, token):
|
|||||||
chunk_text = tokenizer.convert_tokens_to_string(chunk)
|
chunk_text = tokenizer.convert_tokens_to_string(chunk)
|
||||||
|
|
||||||
# Use the Hugging Face API to get embeddings for the chunk
|
# Use the Hugging Face API to get embeddings for the chunk
|
||||||
api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{embedding_model}"
|
api_url = f'https://api-inference.huggingface.co/pipeline/feature-extraction/{embedding_model}'
|
||||||
headers = {"Authorization": f"Bearer {huggingface_token}"}
|
headers = {'Authorization': f'Bearer {huggingface_token}'}
|
||||||
chunk_text = chunk_text.replace("\n", " ")
|
chunk_text = chunk_text.replace('\n', ' ')
|
||||||
|
|
||||||
# Make a POST request to get the chunk's embedding
|
# Make a POST request to get the chunk's embedding
|
||||||
response = requests.post(api_url, headers=headers, json={"inputs": chunk_text, "options": {"wait_for_model": True}})
|
response = requests.post(api_url, headers=headers, json={
|
||||||
|
'inputs': chunk_text, 'options': {'wait_for_model': True}})
|
||||||
|
|
||||||
# Parse the response and extract the embedding
|
# Parse the response and extract the embedding
|
||||||
chunk_embedding = response.json()
|
chunk_embedding = response.json()
|
||||||
# Append the embedding to the list
|
# Append the embedding to the list
|
||||||
embeddings.append(chunk_embedding)
|
embeddings.append(chunk_embedding)
|
||||||
|
|
||||||
#averaging all the embeddings
|
# averaging all the embeddings
|
||||||
#this isn't very effective
|
# this isn't very effective
|
||||||
#someone a better idea?
|
# someone a better idea?
|
||||||
num_embeddings = len(embeddings)
|
num_embeddings = len(embeddings)
|
||||||
average_embedding = [sum(x) / num_embeddings for x in zip(*embeddings)]
|
average_embedding = [sum(x) / num_embeddings for x in zip(*embeddings)]
|
||||||
embedding = average_embedding
|
embedding = average_embedding
|
||||||
return embedding
|
return embedding
|
||||||
|
|
||||||
|
|
||||||
@app.route("/embeddings", methods=["POST"])
|
@app.route('/embeddings', methods=['POST'])
|
||||||
def embeddings():
|
def embeddings():
|
||||||
input_text_list = request.get_json().get("input")
|
input_text_list = request.get_json().get('input')
|
||||||
input_text = ' '.join(map(str, input_text_list))
|
input_text = ' '.join(map(str, input_text_list))
|
||||||
token = request.headers.get('Authorization').replace("Bearer ", "")
|
token = request.headers.get('Authorization').replace('Bearer ', '')
|
||||||
embedding = get_embedding(input_text, token)
|
embedding = get_embedding(input_text, token)
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"data": [
|
'data': [
|
||||||
{
|
{
|
||||||
"embedding": embedding,
|
'embedding': embedding,
|
||||||
"index": 0,
|
'index': 0,
|
||||||
"object": "embedding"
|
'object': 'embedding'
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"model": "text-embedding-ada-002",
|
'model': 'text-embedding-ada-002',
|
||||||
"object": "list",
|
'object': 'list',
|
||||||
"usage": {
|
'usage': {
|
||||||
"prompt_tokens": None,
|
'prompt_tokens': None,
|
||||||
"total_tokens": None
|
'total_tokens': None
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
app.run(host="0.0.0.0", port=1337, debug=True)
|
app.run(host='0.0.0.0', port=1337, debug=True)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
main()
|
Loading…
Reference in New Issue
Block a user