mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-11-10 19:11:01 +00:00
New TwitterBio provider with support for gpt-3.5-turbo and mixtral-8x7b models
This commit is contained in:
parent
3bece24204
commit
21c94f221d
103
g4f/Provider/TwitterBio.py
Normal file
103
g4f/Provider/TwitterBio.py
Normal file
@ -0,0 +1,103 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import re
|
||||
from aiohttp import ClientSession
|
||||
|
||||
from ..typing import AsyncResult, Messages
|
||||
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
|
||||
from .helper import format_prompt
|
||||
|
||||
class TwitterBio(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
url = "https://www.twitterbio.io"
|
||||
api_endpoint_mistral = "https://www.twitterbio.io/api/mistral"
|
||||
api_endpoint_openai = "https://www.twitterbio.io/api/openai"
|
||||
working = True
|
||||
supports_gpt_35_turbo = True
|
||||
|
||||
default_model = 'gpt-3.5-turbo'
|
||||
models = [
|
||||
'mistralai/Mixtral-8x7B-Instruct-v0.1',
|
||||
'gpt-3.5-turbo',
|
||||
]
|
||||
|
||||
model_aliases = {
|
||||
"mixtral-8x7b": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_model(cls, model: str) -> str:
|
||||
if model in cls.models:
|
||||
return model
|
||||
return cls.default_model
|
||||
|
||||
@staticmethod
|
||||
def format_text(text: str) -> str:
|
||||
text = re.sub(r'\s+', ' ', text.strip())
|
||||
text = re.sub(r'\s+([,.!?])', r'\1', text)
|
||||
return text
|
||||
|
||||
@classmethod
|
||||
async def create_async_generator(
|
||||
cls,
|
||||
model: str,
|
||||
messages: Messages,
|
||||
proxy: str = None,
|
||||
**kwargs
|
||||
) -> AsyncResult:
|
||||
model = cls.get_model(model)
|
||||
|
||||
headers = {
|
||||
"accept": "*/*",
|
||||
"accept-language": "en-US,en;q=0.9",
|
||||
"cache-control": "no-cache",
|
||||
"content-type": "application/json",
|
||||
"origin": cls.url,
|
||||
"pragma": "no-cache",
|
||||
"priority": "u=1, i",
|
||||
"referer": f"{cls.url}/",
|
||||
"sec-ch-ua": '"Chromium";v="127", "Not)A;Brand";v="99"',
|
||||
"sec-ch-ua-mobile": "?0",
|
||||
"sec-ch-ua-platform": '"Linux"',
|
||||
"sec-fetch-dest": "empty",
|
||||
"sec-fetch-mode": "cors",
|
||||
"sec-fetch-site": "same-origin",
|
||||
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36"
|
||||
}
|
||||
async with ClientSession(headers=headers) as session:
|
||||
prompt = format_prompt(messages)
|
||||
data = {
|
||||
"prompt": f'{prompt}.'
|
||||
}
|
||||
|
||||
if model == 'mistralai/Mixtral-8x7B-Instruct-v0.1':
|
||||
api_endpoint = cls.api_endpoint_mistral
|
||||
elif model == 'gpt-3.5-turbo':
|
||||
api_endpoint = cls.api_endpoint_openai
|
||||
else:
|
||||
raise ValueError(f"Unsupported model: {model}")
|
||||
|
||||
async with session.post(api_endpoint, json=data, proxy=proxy) as response:
|
||||
response.raise_for_status()
|
||||
buffer = ""
|
||||
async for line in response.content:
|
||||
line = line.decode('utf-8').strip()
|
||||
if line.startswith('data: '):
|
||||
try:
|
||||
json_data = json.loads(line[6:])
|
||||
if model == 'mistralai/Mixtral-8x7B-Instruct-v0.1':
|
||||
if 'choices' in json_data and len(json_data['choices']) > 0:
|
||||
text = json_data['choices'][0].get('text', '')
|
||||
if text:
|
||||
buffer += text
|
||||
elif model == 'gpt-3.5-turbo':
|
||||
text = json_data.get('text', '')
|
||||
if text:
|
||||
buffer += text
|
||||
except json.JSONDecodeError:
|
||||
continue
|
||||
elif line == 'data: [DONE]':
|
||||
break
|
||||
|
||||
if buffer:
|
||||
yield cls.format_text(buffer)
|
@ -51,6 +51,7 @@ from .Replicate import Replicate
|
||||
from .ReplicateHome import ReplicateHome
|
||||
from .Rocks import Rocks
|
||||
from .TeachAnything import TeachAnything
|
||||
from .TwitterBio import TwitterBio
|
||||
from .Upstage import Upstage
|
||||
from .Vercel import Vercel
|
||||
from .WhiteRabbitNeo import WhiteRabbitNeo
|
||||
|
@ -37,6 +37,7 @@ from .Provider import (
|
||||
Replicate,
|
||||
ReplicateHome,
|
||||
TeachAnything,
|
||||
TwitterBio,
|
||||
Upstage,
|
||||
You,
|
||||
)
|
||||
@ -91,7 +92,7 @@ gpt_35_turbo = Model(
|
||||
name = 'gpt-3.5-turbo',
|
||||
base_provider = 'openai',
|
||||
best_provider = IterListProvider([
|
||||
Allyfy,
|
||||
Allyfy, TwitterBio,
|
||||
])
|
||||
)
|
||||
|
||||
@ -140,50 +141,50 @@ gigachat = Model(
|
||||
### Meta ###
|
||||
meta = Model(
|
||||
name = "meta-ai",
|
||||
base_provider = "meta",
|
||||
base_provider = "Meta",
|
||||
best_provider = MetaAI
|
||||
)
|
||||
|
||||
llama_3_8b = Model(
|
||||
name = "llama-3-8b",
|
||||
base_provider = "meta",
|
||||
base_provider = "Meta",
|
||||
best_provider = IterListProvider([DeepInfra, Replicate])
|
||||
)
|
||||
|
||||
llama_3_70b = Model(
|
||||
name = "llama-3-70b",
|
||||
base_provider = "meta",
|
||||
base_provider = "Meta",
|
||||
best_provider = IterListProvider([ReplicateHome, DeepInfra, PerplexityLabs, Replicate])
|
||||
)
|
||||
|
||||
llama_3_1_8b = Model(
|
||||
name = "llama-3.1-8b",
|
||||
base_provider = "meta",
|
||||
base_provider = "Meta",
|
||||
best_provider = IterListProvider([Blackbox])
|
||||
)
|
||||
|
||||
llama_3_1_70b = Model(
|
||||
name = "llama-3.1-70b",
|
||||
base_provider = "meta",
|
||||
base_provider = "Meta",
|
||||
best_provider = IterListProvider([DDG, HuggingChat, FreeGpt, Blackbox, TeachAnything, HuggingFace])
|
||||
)
|
||||
|
||||
llama_3_1_405b = Model(
|
||||
name = "llama-3.1-405b",
|
||||
base_provider = "meta",
|
||||
base_provider = "Meta",
|
||||
best_provider = IterListProvider([HuggingChat, Blackbox, HuggingFace])
|
||||
)
|
||||
|
||||
### Mistral ###
|
||||
mixtral_8x7b = Model(
|
||||
name = "mixtral-8x7b",
|
||||
base_provider = "huggingface",
|
||||
best_provider = IterListProvider([HuggingChat, DDG, ReplicateHome, DeepInfra, HuggingFace,])
|
||||
base_provider = "Mistral",
|
||||
best_provider = IterListProvider([HuggingChat, DDG, ReplicateHome, TwitterBio, DeepInfra, HuggingFace,])
|
||||
)
|
||||
|
||||
mistral_7b = Model(
|
||||
name = "mistral-7b",
|
||||
base_provider = "huggingface",
|
||||
base_provider = "Mistral",
|
||||
best_provider = IterListProvider([HuggingChat, HuggingFace, DeepInfra])
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user