2023-06-24 01:47:00 +00:00
|
|
|
import json
|
|
|
|
import random
|
2023-07-28 10:07:17 +00:00
|
|
|
import string
|
|
|
|
import time
|
|
|
|
from typing import Any
|
2023-09-19 17:43:04 +00:00
|
|
|
import requests
|
2023-07-28 10:07:17 +00:00
|
|
|
from flask import Flask, request
|
2023-06-24 01:47:00 +00:00
|
|
|
from flask_cors import CORS
|
2023-09-20 13:31:37 +00:00
|
|
|
from transformers import AutoTokenizer
|
2023-07-28 10:07:17 +00:00
|
|
|
from g4f import ChatCompletion
|
|
|
|
|
2023-06-24 01:47:00 +00:00
|
|
|
app = Flask(__name__)
|
|
|
|
CORS(app)
|
|
|
|
|
2023-08-31 11:32:23 +00:00
|
|
|
|
2023-07-28 10:07:17 +00:00
|
|
|
@app.route("/chat/completions", methods=["POST"])
|
2023-06-24 01:47:00 +00:00
|
|
|
def chat_completions():
|
2023-07-28 10:07:17 +00:00
|
|
|
model = request.get_json().get("model", "gpt-3.5-turbo")
|
|
|
|
stream = request.get_json().get("stream", False)
|
|
|
|
messages = request.get_json().get("messages")
|
2023-06-24 01:47:00 +00:00
|
|
|
|
2023-07-28 10:07:17 +00:00
|
|
|
response = ChatCompletion.create(model=model, stream=stream, messages=messages)
|
2023-06-24 01:47:00 +00:00
|
|
|
|
2023-07-28 10:07:17 +00:00
|
|
|
completion_id = "".join(random.choices(string.ascii_letters + string.digits, k=28))
|
|
|
|
completion_timestamp = int(time.time())
|
|
|
|
|
|
|
|
if not stream:
|
2023-06-24 01:47:00 +00:00
|
|
|
return {
|
2023-07-28 10:07:17 +00:00
|
|
|
"id": f"chatcmpl-{completion_id}",
|
|
|
|
"object": "chat.completion",
|
|
|
|
"created": completion_timestamp,
|
|
|
|
"model": model,
|
|
|
|
"choices": [
|
|
|
|
{
|
|
|
|
"index": 0,
|
|
|
|
"message": {
|
|
|
|
"role": "assistant",
|
|
|
|
"content": response,
|
|
|
|
},
|
|
|
|
"finish_reason": "stop",
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"usage": {
|
|
|
|
"prompt_tokens": None,
|
|
|
|
"completion_tokens": None,
|
|
|
|
"total_tokens": None,
|
2023-06-24 01:47:00 +00:00
|
|
|
},
|
|
|
|
}
|
|
|
|
|
2023-07-28 10:07:17 +00:00
|
|
|
def streaming():
|
|
|
|
for chunk in response:
|
2023-06-24 01:47:00 +00:00
|
|
|
completion_data = {
|
2023-07-28 10:07:17 +00:00
|
|
|
"id": f"chatcmpl-{completion_id}",
|
|
|
|
"object": "chat.completion.chunk",
|
|
|
|
"created": completion_timestamp,
|
|
|
|
"model": model,
|
|
|
|
"choices": [
|
2023-06-24 01:47:00 +00:00
|
|
|
{
|
2023-07-28 10:07:17 +00:00
|
|
|
"index": 0,
|
|
|
|
"delta": {
|
|
|
|
"content": chunk,
|
2023-06-24 01:47:00 +00:00
|
|
|
},
|
2023-07-28 10:07:17 +00:00
|
|
|
"finish_reason": None,
|
2023-06-24 01:47:00 +00:00
|
|
|
}
|
2023-07-28 10:07:17 +00:00
|
|
|
],
|
2023-06-24 01:47:00 +00:00
|
|
|
}
|
|
|
|
|
2023-07-28 10:07:17 +00:00
|
|
|
content = json.dumps(completion_data, separators=(",", ":"))
|
|
|
|
yield f"data: {content}\n\n"
|
2023-06-24 01:47:00 +00:00
|
|
|
time.sleep(0.1)
|
|
|
|
|
2023-07-28 10:07:17 +00:00
|
|
|
end_completion_data: dict[str, Any] = {
|
|
|
|
"id": f"chatcmpl-{completion_id}",
|
|
|
|
"object": "chat.completion.chunk",
|
|
|
|
"created": completion_timestamp,
|
|
|
|
"model": model,
|
|
|
|
"choices": [
|
|
|
|
{
|
|
|
|
"index": 0,
|
|
|
|
"delta": {},
|
|
|
|
"finish_reason": "stop",
|
|
|
|
}
|
|
|
|
],
|
|
|
|
}
|
|
|
|
content = json.dumps(end_completion_data, separators=(",", ":"))
|
|
|
|
yield f"data: {content}\n\n"
|
2023-06-24 01:47:00 +00:00
|
|
|
|
2023-07-28 10:07:17 +00:00
|
|
|
return app.response_class(streaming(), mimetype="text/event-stream")
|
2023-06-24 01:47:00 +00:00
|
|
|
|
|
|
|
|
2023-09-19 17:43:04 +00:00
|
|
|
#Get the embedding from huggingface
|
|
|
|
def get_embedding(input_text, token):
|
|
|
|
huggingface_token = token
|
|
|
|
embedding_model = "sentence-transformers/all-mpnet-base-v2"
|
|
|
|
max_token_length = 500
|
|
|
|
|
|
|
|
# Load the tokenizer for the "all-mpnet-base-v2" model
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
|
|
|
|
# Tokenize the text and split the tokens into chunks of 500 tokens each
|
|
|
|
tokens = tokenizer.tokenize(input_text)
|
|
|
|
token_chunks = [tokens[i:i + max_token_length] for i in range(0, len(tokens), max_token_length)]
|
|
|
|
|
|
|
|
# Initialize an empty list
|
|
|
|
embeddings = []
|
|
|
|
|
|
|
|
# Create embeddings for each chunk
|
|
|
|
for chunk in token_chunks:
|
|
|
|
# Convert the chunk tokens back to text
|
|
|
|
chunk_text = tokenizer.convert_tokens_to_string(chunk)
|
|
|
|
|
|
|
|
# Use the Hugging Face API to get embeddings for the chunk
|
|
|
|
api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{embedding_model}"
|
|
|
|
headers = {"Authorization": f"Bearer {huggingface_token}"}
|
|
|
|
chunk_text = chunk_text.replace("\n", " ")
|
|
|
|
|
|
|
|
# Make a POST request to get the chunk's embedding
|
|
|
|
response = requests.post(api_url, headers=headers, json={"inputs": chunk_text, "options": {"wait_for_model": True}})
|
|
|
|
|
|
|
|
# Parse the response and extract the embedding
|
|
|
|
chunk_embedding = response.json()
|
|
|
|
# Append the embedding to the list
|
|
|
|
embeddings.append(chunk_embedding)
|
|
|
|
|
|
|
|
#averaging all the embeddings
|
|
|
|
#this isn't very effective
|
|
|
|
#someone a better idea?
|
|
|
|
num_embeddings = len(embeddings)
|
|
|
|
average_embedding = [sum(x) / num_embeddings for x in zip(*embeddings)]
|
|
|
|
embedding = average_embedding
|
|
|
|
return embedding
|
|
|
|
|
|
|
|
|
|
|
|
@app.route("/embeddings", methods=["POST"])
|
|
|
|
def embeddings():
|
|
|
|
input_text_list = request.get_json().get("input")
|
|
|
|
input_text = ' '.join(map(str, input_text_list))
|
|
|
|
token = request.headers.get('Authorization').replace("Bearer ", "")
|
|
|
|
embedding = get_embedding(input_text, token)
|
|
|
|
return {
|
|
|
|
"data": [
|
|
|
|
{
|
|
|
|
"embedding": embedding,
|
|
|
|
"index": 0,
|
|
|
|
"object": "embedding"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"model": "text-embedding-ada-002",
|
|
|
|
"object": "list",
|
|
|
|
"usage": {
|
|
|
|
"prompt_tokens": None,
|
|
|
|
"total_tokens": None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-08-31 11:32:23 +00:00
|
|
|
def main():
|
|
|
|
app.run(host="0.0.0.0", port=1337, debug=True)
|
|
|
|
|
|
|
|
|
2023-07-28 10:07:17 +00:00
|
|
|
if __name__ == "__main__":
|
2023-09-19 17:43:04 +00:00
|
|
|
main()
|