2023-09-03 08:26:26 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
2023-08-27 23:43:45 +00:00
|
|
|
import json
|
|
|
|
import uuid
|
2023-09-03 08:26:26 +00:00
|
|
|
|
2023-08-27 23:43:45 +00:00
|
|
|
from aiohttp import ClientSession
|
2023-07-28 10:07:17 +00:00
|
|
|
|
2023-08-27 23:43:45 +00:00
|
|
|
from ..typing import AsyncGenerator
|
|
|
|
from .base_provider import AsyncGeneratorProvider, format_prompt
|
2023-07-28 10:07:17 +00:00
|
|
|
|
|
|
|
|
2023-08-27 23:43:45 +00:00
|
|
|
class H2o(AsyncGeneratorProvider):
|
|
|
|
url = "https://gpt-gm.h2o.ai"
|
|
|
|
working = True
|
2023-09-05 15:27:24 +00:00
|
|
|
model = "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1"
|
2023-07-28 10:07:17 +00:00
|
|
|
|
2023-08-27 23:43:45 +00:00
|
|
|
@classmethod
|
|
|
|
async def create_async_generator(
|
|
|
|
cls,
|
2023-07-28 10:07:17 +00:00
|
|
|
model: str,
|
|
|
|
messages: list[dict[str, str]],
|
2023-08-27 23:43:45 +00:00
|
|
|
proxy: str = None,
|
|
|
|
**kwargs
|
|
|
|
) -> AsyncGenerator:
|
|
|
|
model = model if model else cls.model
|
2023-07-28 10:07:17 +00:00
|
|
|
headers = {"Referer": "https://gpt-gm.h2o.ai/"}
|
|
|
|
|
2023-08-27 23:43:45 +00:00
|
|
|
async with ClientSession(
|
|
|
|
headers=headers
|
|
|
|
) as session:
|
|
|
|
data = {
|
|
|
|
"ethicsModalAccepted": "true",
|
|
|
|
"shareConversationsWithModelAuthors": "true",
|
|
|
|
"ethicsModalAcceptedAt": "",
|
|
|
|
"activeModel": model,
|
|
|
|
"searchEnabled": "true",
|
|
|
|
}
|
|
|
|
async with session.post(
|
|
|
|
"https://gpt-gm.h2o.ai/settings",
|
|
|
|
proxy=proxy,
|
|
|
|
data=data
|
|
|
|
) as response:
|
|
|
|
response.raise_for_status()
|
2023-07-28 10:07:17 +00:00
|
|
|
|
2023-08-27 23:43:45 +00:00
|
|
|
async with session.post(
|
|
|
|
"https://gpt-gm.h2o.ai/conversation",
|
|
|
|
proxy=proxy,
|
|
|
|
json={"model": model},
|
|
|
|
) as response:
|
|
|
|
response.raise_for_status()
|
|
|
|
conversationId = (await response.json())["conversationId"]
|
2023-07-28 10:07:17 +00:00
|
|
|
|
2023-08-27 23:43:45 +00:00
|
|
|
data = {
|
|
|
|
"inputs": format_prompt(messages),
|
|
|
|
"parameters": {
|
|
|
|
"temperature": 0.4,
|
|
|
|
"truncate": 2048,
|
|
|
|
"max_new_tokens": 1024,
|
|
|
|
"do_sample": True,
|
|
|
|
"repetition_penalty": 1.2,
|
|
|
|
"return_full_text": False,
|
|
|
|
**kwargs
|
|
|
|
},
|
|
|
|
"stream": True,
|
|
|
|
"options": {
|
|
|
|
"id": str(uuid.uuid4()),
|
|
|
|
"response_id": str(uuid.uuid4()),
|
|
|
|
"is_retry": False,
|
|
|
|
"use_cache": False,
|
|
|
|
"web_search_id": "",
|
|
|
|
},
|
|
|
|
}
|
|
|
|
async with session.post(
|
|
|
|
f"https://gpt-gm.h2o.ai/conversation/{conversationId}",
|
|
|
|
proxy=proxy,
|
|
|
|
json=data
|
|
|
|
) as response:
|
|
|
|
start = "data:"
|
|
|
|
async for line in response.content:
|
|
|
|
line = line.decode("utf-8")
|
|
|
|
if line and line.startswith(start):
|
|
|
|
line = json.loads(line[len(start):-1])
|
|
|
|
if not line["token"]["special"]:
|
|
|
|
yield line["token"]["text"]
|
2023-07-28 10:07:17 +00:00
|
|
|
|
|
|
|
@classmethod
|
|
|
|
@property
|
|
|
|
def params(cls):
|
|
|
|
params = [
|
|
|
|
("model", "str"),
|
|
|
|
("messages", "list[dict[str, str]]"),
|
|
|
|
("stream", "bool"),
|
|
|
|
("temperature", "float"),
|
|
|
|
("truncate", "int"),
|
|
|
|
("max_new_tokens", "int"),
|
|
|
|
("do_sample", "bool"),
|
|
|
|
("repetition_penalty", "float"),
|
|
|
|
("return_full_text", "bool"),
|
|
|
|
]
|
|
|
|
param = ", ".join([": ".join(p) for p in params])
|
2023-09-17 21:23:54 +00:00
|
|
|
return f"g4f.provider.{cls.__name__} supports: ({param})"
|