gpt4free/g4f/Provider/Llama.py

92 lines
3.4 KiB
Python
Raw Normal View History

2023-10-15 17:10:25 +00:00
from __future__ import annotations
from aiohttp import ClientSession
from ..typing import AsyncResult, Messages
2024-04-06 22:07:58 +00:00
from ..requests.raise_for_status import raise_for_status
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
2023-10-15 17:10:25 +00:00
class Llama(AsyncGeneratorProvider, ProviderModelMixin):
2023-10-27 20:59:14 +00:00
url = "https://www.llama2.ai"
working = True
supports_message_history = True
default_model = "meta/llama-3-70b-chat"
models = [
"meta/llama-2-7b-chat",
"meta/llama-2-13b-chat",
"meta/llama-2-70b-chat",
"meta/meta-llama-3-8b-instruct",
"meta/meta-llama-3-70b-instruct",
]
model_aliases = {
"meta-llama/Meta-Llama-3-8b-instruct": "meta/meta-llama-3-8b-instruct",
"meta-llama/Meta-Llama-3-70b-instruct": "meta/meta-llama-3-70b-instruct",
"meta-llama/Llama-2-7b-chat-hf": "meta/llama-2-7b-chat",
"meta-llama/Llama-2-13b-chat-hf": "meta/llama-2-13b-chat",
"meta-llama/Llama-2-70b-chat-hf": "meta/llama-2-70b-chat",
}
2023-10-15 17:10:25 +00:00
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
system_message: str = "You are a helpful assistant.",
temperature: float = 0.75,
top_p: float = 0.9,
max_tokens: int = 8000,
2023-10-15 17:10:25 +00:00
**kwargs
) -> AsyncResult:
headers = {
"User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/118.0",
"Accept": "*/*",
"Accept-Language": "de,en-US;q=0.7,en;q=0.3",
"Accept-Encoding": "gzip, deflate, br",
"Referer": f"{cls.url}/",
"Content-Type": "text/plain;charset=UTF-8",
"Origin": cls.url,
"Connection": "keep-alive",
"Sec-Fetch-Dest": "empty",
"Sec-Fetch-Mode": "cors",
"Sec-Fetch-Site": "same-origin",
"Pragma": "no-cache",
"Cache-Control": "no-cache",
"TE": "trailers"
}
async with ClientSession(headers=headers) as session:
system_messages = [message["content"] for message in messages if message["role"] == "system"]
if system_messages:
system_message = "\n".join(system_messages)
messages = [message for message in messages if message["role"] != "system"]
2023-10-15 17:10:25 +00:00
prompt = format_prompt(messages)
data = {
"prompt": prompt,
"model": cls.get_model(model),
"systemPrompt": system_message,
"temperature": temperature,
"topP": top_p,
"maxTokens": max_tokens,
2023-10-15 17:10:25 +00:00
"image": None
}
started = False
async with session.post(f"{cls.url}/api", json=data, proxy=proxy) as response:
2024-04-06 22:07:58 +00:00
await raise_for_status(response)
2023-10-15 17:10:25 +00:00
async for chunk in response.content.iter_any():
2024-04-06 22:07:58 +00:00
if not chunk:
continue
2023-10-15 17:10:25 +00:00
if not started:
chunk = chunk.lstrip()
started = True
2024-01-18 02:55:44 +00:00
yield chunk.decode(errors="ignore")
2023-10-15 17:10:25 +00:00
def format_prompt(messages: Messages):
messages = [
2023-10-26 19:32:49 +00:00
f"[INST] {message['content']} [/INST]"
2023-10-15 17:10:25 +00:00
if message["role"] == "user"
else message["content"]
for message in messages
]
2024-01-18 02:55:44 +00:00
return "\n".join(messages) + "\n"