gpt4free/g4f/Provider/Bing.py

390 lines
15 KiB
Python
Raw Normal View History

from __future__ import annotations
2023-07-28 10:07:17 +00:00
2023-09-05 15:35:51 +00:00
import random
import json
import uuid
2023-12-18 12:07:00 +00:00
import time
from urllib import parse
2024-01-23 22:48:11 +00:00
from aiohttp import ClientSession, ClientTimeout, BaseConnector
from ..typing import AsyncResult, Messages, ImageType, Cookies
from ..image import ImageResponse, ImageRequest
from .base_provider import AsyncGeneratorProvider
2024-01-23 23:46:35 +00:00
from .helper import get_connector
from .bing.upload_image import upload_image
from .bing.create_images import create_images
from .bing.conversation import Conversation, create_conversation, delete_conversation
2023-07-28 10:07:17 +00:00
class Tones:
"""
Defines the different tone options for the Bing provider.
"""
creative = "Creative"
balanced = "Balanced"
precise = "Precise"
class Bing(AsyncGeneratorProvider):
"""
Bing provider for generating responses using the Bing API.
"""
2023-10-27 20:59:14 +00:00
url = "https://bing.com/chat"
working = True
supports_message_history = True
2023-10-27 20:59:14 +00:00
supports_gpt_4 = True
2023-08-23 00:16:35 +00:00
@staticmethod
def create_async_generator(
model: str,
2023-10-09 08:22:17 +00:00
messages: Messages,
proxy: str = None,
timeout: int = 900,
cookies: Cookies = None,
2024-01-23 22:48:11 +00:00
connector: BaseConnector = None,
tone: str = Tones.balanced,
image: ImageType = None,
web_search: bool = False,
**kwargs
2023-10-09 08:22:17 +00:00
) -> AsyncResult:
"""
Creates an asynchronous generator for producing responses from Bing.
:param model: The model to use.
:param messages: Messages to process.
:param proxy: Proxy to use for requests.
:param timeout: Timeout for requests.
:param cookies: Cookies for the session.
:param tone: The tone of the response.
:param image: The image type to be used.
:param web_search: Flag to enable or disable web search.
:return: An asynchronous result object.
"""
2023-08-23 00:16:35 +00:00
if len(messages) < 2:
prompt = messages[0]["content"]
context = None
else:
prompt = messages[-1]["content"]
context = create_context(messages[:-1])
2024-02-17 21:36:31 +00:00
cookies = {**get_default_cookies(), **cookies} if cookies else get_default_cookies()
2023-12-21 00:03:15 +00:00
gpt4_turbo = True if model.startswith("gpt-4-turbo") else False
2024-02-26 10:25:07 +00:00
return stream_generate(prompt, tone, image, context, cookies, get_connector(connector, proxy, True), web_search, gpt4_turbo, timeout)
2023-07-28 10:07:17 +00:00
def create_context(messages: Messages) -> str:
"""
Creates a context string from a list of messages.
:param messages: A list of message dictionaries.
:return: A string representing the context created from the messages.
"""
return "\n\n".join(
f"[{message['role']}]" + ("(#message)" if message['role'] != "system" else "(#additional_instructions)") + f"\n{message['content']}"
for message in messages
)
2023-07-28 10:07:17 +00:00
def get_ip_address() -> str:
return f"13.{random.randint(104, 107)}.{random.randint(0, 255)}.{random.randint(0, 255)}"
2023-07-28 10:07:17 +00:00
class Defaults:
"""
Default settings and configurations for the Bing provider.
"""
2023-07-28 10:07:17 +00:00
delimiter = "\x1e"
# List of allowed message types for Bing responses
2023-07-28 10:07:17 +00:00
allowedMessageTypes = [
"ActionRequest","Chat",
"ConfirmationCard", "Context",
"InternalSearchQuery", #"InternalSearchResult",
"Disengaged", #"InternalLoaderMessage",
"Progress", "RenderCardRequest",
"RenderContentRequest", "AdsQuery",
"SemanticSerp", "GenerateContentQuery",
"SearchQuery", "GeneratedCode",
"InternalTasksMessage"
2023-07-28 10:07:17 +00:00
]
sliceIds = {
"Balanced": [
"supllmnfe","archnewtf",
"stpstream", "stpsig", "vnextvoicecf", "scmcbase", "cmcpupsalltf", "sydtransctrl",
"thdnsrch", "220dcl1s0", "0215wcrwips0", "0305hrthrots0", "0130gpt4t",
"bingfc", "0225unsticky1", "0228scss0",
"defquerycf", "defcontrol", "3022tphpv"
],
"Creative": [
"bgstream", "fltltst2c",
"stpstream", "stpsig", "vnextvoicecf", "cmcpupsalltf", "sydtransctrl",
"0301techgnd", "220dcl1bt15", "0215wcrwip", "0305hrthrot", "0130gpt4t",
"bingfccf", "0225unsticky1", "0228scss0",
"3022tpvs0"
],
"Precise": [
"bgstream", "fltltst2c",
"stpstream", "stpsig", "vnextvoicecf", "cmcpupsalltf", "sydtransctrl",
"0301techgnd", "220dcl1bt15", "0215wcrwip", "0305hrthrot", "0130gpt4t",
"bingfccf", "0225unsticky1", "0228scss0",
"defquerycf", "3022tpvs0"
],
}
optionsSets = {
"Balanced": [
"nlu_direct_response_filter", "deepleo",
"disable_emoji_spoken_text", "responsible_ai_policy_235",
"enablemm", "dv3sugg", "autosave",
"iyxapbing", "iycapbing",
"galileo", "saharagenconv5", "gldcl1p",
"gpt4tmncnp"
],
"Creative": [
"nlu_direct_response_filter", "deepleo",
"disable_emoji_spoken_text", "responsible_ai_policy_235",
"enablemm", "dv3sugg",
"iyxapbing", "iycapbing",
"h3imaginative", "techinstgnd", "hourthrot", "clgalileo", "gencontentv3",
"gpt4tmncnp"
],
"Precise": [
"nlu_direct_response_filter", "deepleo",
"disable_emoji_spoken_text", "responsible_ai_policy_235",
"enablemm", "dv3sugg",
"iyxapbing", "iycapbing",
"h3precise", "techinstgnd", "hourthrot", "techinstgnd", "hourthrot",
"clgalileo", "gencontentv3"
],
}
2023-07-28 10:07:17 +00:00
# Default location settings
2023-07-28 10:07:17 +00:00
location = {
"locale": "en-US", "market": "en-US", "region": "US",
"location":"lat:34.0536909;long:-118.242766;re=1000m;",
"locationHints": [{
"country": "United States", "state": "California", "city": "Los Angeles",
"timezoneoffset": 8, "countryConfidence": 8,
"Center": {"Latitude": 34.0536909, "Longitude": -118.242766},
"RegionType": 2, "SourceType": 1
}],
2023-07-28 10:07:17 +00:00
}
# Default headers for requests
2023-08-21 20:39:57 +00:00
headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'max-age=0',
'sec-ch-ua': '"Chromium";v="110", "Not A(Brand";v="24", "Microsoft Edge";v="110"',
'sec-ch-ua-arch': '"x86"',
'sec-ch-ua-bitness': '"64"',
'sec-ch-ua-full-version': '"110.0.1587.69"',
'sec-ch-ua-full-version-list': '"Chromium";v="110.0.5481.192", "Not A(Brand";v="24.0.0.0", "Microsoft Edge";v="110.0.1587.69"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-model': '""',
'sec-ch-ua-platform': '"Windows"',
'sec-ch-ua-platform-version': '"15.0.0"',
'sec-fetch-dest': 'document',
'sec-fetch-mode': 'navigate',
'sec-fetch-site': 'none',
'sec-fetch-user': '?1',
'upgrade-insecure-requests': '1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36 Edg/110.0.1587.69',
'x-edge-shopping-flag': '1',
'x-forwarded-for': get_ip_address(),
2023-08-21 20:39:57 +00:00
}
2024-02-17 21:36:31 +00:00
def get_default_cookies():
return {
'SRCHD' : 'AF=NOFORM',
'PPLState' : '1',
'KievRPSSecAuth': '',
'SUID' : '',
'SRCHUSR' : '',
'SRCHHPGUSR' : f'HV={int(time.time())}',
}
2023-08-21 20:39:57 +00:00
def format_message(msg: dict) -> str:
"""
Formats a message dictionary into a JSON string with a delimiter.
:param msg: The message dictionary to format.
:return: A formatted string representation of the message.
"""
return json.dumps(msg, ensure_ascii=False) + Defaults.delimiter
2023-08-21 20:39:57 +00:00
def create_message(
conversation: Conversation,
prompt: str,
tone: str,
context: str = None,
image_request: ImageRequest = None,
web_search: bool = False,
gpt4_turbo: bool = False
) -> str:
"""
Creates a message for the Bing API with specified parameters.
:param conversation: The current conversation object.
:param prompt: The user's input prompt.
:param tone: The desired tone for the response.
:param context: Additional context for the prompt.
:param image_request: The image request with the url.
:param web_search: Flag to enable web search.
:param gpt4_turbo: Flag to enable GPT-4 Turbo.
:return: A formatted string message for the Bing API.
"""
options_sets = []
if not web_search:
options_sets.append("nosearchall")
2023-12-21 00:03:15 +00:00
if gpt4_turbo:
options_sets.append("dlgpt4t")
request_id = str(uuid.uuid4())
2023-08-21 20:39:57 +00:00
struct = {
"arguments":[{
"source": "cib",
"optionsSets": [*Defaults.optionsSets[tone], *options_sets],
"allowedMessageTypes": Defaults.allowedMessageTypes,
"sliceIds": Defaults.sliceIds[tone],
"verbosity": "verbose",
"scenario": "SERP",
"plugins": [{"id": "c310c353-b9f0-4d76-ab0d-1dd5e979cf68", "category": 1}] if web_search else [],
"traceId": str(uuid.uuid4()),
"conversationHistoryOptionsSets": ["autosave","savemem","uprofupd","uprofgen"],
"gptId": "copilot",
"isStartOfSession": True,
"requestId": request_id,
"message":{
**Defaults.location,
"userIpAddress": get_ip_address(),
"timestamp": "2024-03-11T22:40:36+01:00",
"author": "user",
"inputMethod": "Keyboard",
"text": prompt,
"messageType": "Chat",
"requestId": request_id,
"messageId": request_id
},
"tone": tone,
"spokenTextMode": "None",
"conversationId": conversation.conversationId,
"participant": {"id": conversation.clientId}
}],
"invocationId": "0",
"target": "chat",
"type": 4
2023-08-21 20:39:57 +00:00
}
if image_request and image_request.get('imageUrl') and image_request.get('originalImageUrl'):
struct['arguments'][0]['message']['originalImageUrl'] = image_request.get('originalImageUrl')
struct['arguments'][0]['message']['imageUrl'] = image_request.get('imageUrl')
Major Update for Bing - Supports latest bundle version and image analysis Here it is, a much-needed update to this service which offers numerous functionalities that the old code was unable to deliver to us. As you may know, ChatGPT Plus subscribers now have the opportunity to request image analysis directly from GPT within the chat bar. Bing has also integrated this feature into its chatbot. With this new code, you can now provide an image using a data URI, with all the following supported extensions: jpg, jpeg, png, and gif! **What is a data URI and how can I provide an image to Bing?** Just to clarify, a data URI is a method for encoding data directly into a URI (Uniform Resource Identifier). It is typically used for embedding small data objects like images, text, or other resources within web pages or documents. Data URIs are widely used in web applications. To provide an image from your desktop and retrieve it as a data URI, you can use this code: [GitHub link](https://gist.github.com/jsocol/1089733). Now, here is a code snippet you can use to provide images to Bing: ```python import g4f provider = g4f.Provider.Bing user_message = [{"role": "user", "content": "Hi, describe this image."}] response = g4f.ChatCompletion.create( model = g4f.models.gpt_4, provider = g4f.provider, # Corrected the provider value messages = user_message, stream = True, image = "..." # Insert your full data URI image here ) for message in response: print(message, flush=True, end='') ``` If you don't want to analyze the image, just do not specify the image parameter. Regarding the implementation, the image is preprocessed within the Bing.py code, which can be resource-intensive for a server-side implementation. When using the Bing chatbot in your web browser, the image is preprocessed on your computer before being sent to the server. This preprocessing includes tasks like image rotation and compression. Although this implementation works, it would be more efficient to delegate image preprocessing to the client as it happens in reality. I will try to provide a JavaScript code for that at a later time. As you saw, I did mention in the title that it is in Beta. The way the code is written, Bing can sometimes mess up its answers. Indeed, Bing does not really stream its responses as the other providers do. Bing sends its answers like this on each iteration: "Hi," "Hi, this," "Hi, this is," "Hi, this is Bing." Instead of sending each segment one at a time, it already adds them on each iteration. So, to simulate a normal streaming response, other contributors made the code wait for the next iteration to retrieve the newer segments and yield them. However, this method ignores something that Bing does. Bing processes its responses in a markdown detector, which searches for links while the AI answers. If it finds a link, it saves it and waits until the AI finishes its answer to put all the found links at the very end of the answer. So if the AI is writing a link, but then on the next iteration, it finishes writing this link, it will then be deleted from the answer and appear later at the very end. Example: "Here is your link reference [" "Here is your link reference [^" "Here is your link reference [^1" "Here is your link reference [^1^" And then the response would get stuck there because the markdown detector would have deleted this link reference in the next response and waited until the AI is finished to put it at the very end. For this reason, I am working on an update to anticipate the markdown detector. So please, if you guys notice any bugs with this new implementation, I would greatly appreciate it if you could report them on the issue tab of this repo. Thanks in advance, and I hope that all these explanations were clear to you!
2023-10-22 13:59:56 +00:00
struct['arguments'][0]['experienceType'] = None
struct['arguments'][0]['attachedFileInfo'] = {"fileName": None, "fileType": None}
2023-08-21 20:39:57 +00:00
if context:
struct['arguments'][0]['previousMessages'] = [{
"author": "user",
"description": context,
"contextType": "WebPage",
"messageType": "Context",
"messageId": "discover-web--page-ping-mriduna-----"
}]
2023-08-21 20:39:57 +00:00
return format_message(struct)
async def stream_generate(
prompt: str,
tone: str,
image: ImageType = None,
context: str = None,
cookies: dict = None,
2024-01-23 22:48:11 +00:00
connector: BaseConnector = None,
web_search: bool = False,
gpt4_turbo: bool = False,
timeout: int = 900
):
"""
Asynchronously streams generated responses from the Bing API.
:param prompt: The user's input prompt.
:param tone: The desired tone for the response.
:param image: The image type involved in the response.
:param context: Additional context for the prompt.
:param cookies: Cookies for the session.
:param web_search: Flag to enable web search.
:param gpt4_turbo: Flag to enable GPT-4 Turbo.
:param timeout: Timeout for the request.
:return: An asynchronous generator yielding responses.
"""
headers = Defaults.headers
if cookies:
headers["cookie"] = "; ".join(f"{k}={v}" for k, v in cookies.items())
2023-08-21 20:39:57 +00:00
async with ClientSession(
headers=headers, cookies=cookies,
timeout=ClientTimeout(total=timeout), connector=connector
) as session:
2024-01-23 22:48:11 +00:00
conversation = await create_conversation(session)
image_request = await upload_image(session, image, tone) if image else None
2023-08-21 20:39:57 +00:00
try:
async with session.ws_connect(
'wss://sydney.bing.com/sydney/ChatHub',
autoping=False,
2024-01-23 22:48:11 +00:00
params={'sec_access_token': conversation.conversationSignature}
) as wss:
2023-08-21 20:39:57 +00:00
await wss.send_str(format_message({'protocol': 'json', 'version': 1}))
await wss.send_str(format_message({"type": 6}))
await wss.receive(timeout=timeout)
await wss.send_str(create_message(conversation, prompt, tone, context, image_request, web_search, gpt4_turbo))
2023-08-21 20:39:57 +00:00
response_txt = ''
returned_text = ''
final = False
message_id = None
2023-08-21 20:39:57 +00:00
while not final:
msg = await wss.receive(timeout=timeout)
if not msg.data:
continue
2023-08-21 20:39:57 +00:00
objects = msg.data.split(Defaults.delimiter)
for obj in objects:
if obj is None or not obj:
continue
response = json.loads(obj)
if response and response.get('type') == 1 and response['arguments'][0].get('messages'):
2023-08-21 20:39:57 +00:00
message = response['arguments'][0]['messages'][0]
# Reset memory, if we have a new message
if message_id is not None and message_id != message["messageId"]:
returned_text = ''
message_id = message["messageId"]
image_response = None
2023-08-21 20:39:57 +00:00
if (message['contentOrigin'] != 'Apology'):
if 'adaptiveCards' in message:
card = message['adaptiveCards'][0]['body'][0]
if "text" in card:
response_txt = card.get('text')
if message.get('messageType') and "inlines" in card:
inline_txt = card['inlines'][0].get('text')
response_txt += inline_txt + '\n'
elif message.get('contentType') == "IMAGE":
prompt = message.get('text')
try:
image_response = ImageResponse(await create_images(session, prompt), prompt, {"preview": "{image}?w=200&h=200"})
except:
response_txt += f"\nhttps://www.bing.com/images/create?q={parse.quote(prompt)}"
final = True
2023-08-21 20:39:57 +00:00
if response_txt.startswith(returned_text):
new = response_txt[len(returned_text):]
if new != "\n":
yield new
returned_text = response_txt
if image_response:
yield image_response
2023-08-21 20:39:57 +00:00
elif response.get('type') == 2:
result = response['item']['result']
if result.get('error'):
if result["value"] == "CaptchaChallenge":
raise Exception(f"{result['value']}: Use other cookies or/and ip address")
else:
raise Exception(f"{result['value']}: {result['message']}")
return
2023-08-21 20:39:57 +00:00
finally:
2024-01-23 22:48:11 +00:00
await delete_conversation(session, conversation)