mirror of
https://github.com/nomic-ai/gpt4all
synced 2024-11-02 09:40:42 +00:00
4b413a60e4
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Signed-off-by: AT <manyoso@users.noreply.github.com>
191 lines
4.8 KiB
C++
191 lines
4.8 KiB
C++
#include "embeddings.h"
|
|
|
|
#include <QFile>
|
|
#include <QFileInfo>
|
|
#include <QDebug>
|
|
|
|
#include "mysettings.h"
|
|
#include "hnswlib/hnswlib.h"
|
|
|
|
#define EMBEDDINGS_VERSION 0
|
|
|
|
const int s_dim = 384; // Dimension of the elements
|
|
const int s_ef_construction = 200; // Controls index search speed/build speed tradeoff
|
|
const int s_M = 16; // Tightly connected with internal dimensionality of the data
|
|
// strongly affects the memory consumption
|
|
|
|
Embeddings::Embeddings(QObject *parent)
|
|
: QObject(parent)
|
|
, m_space(nullptr)
|
|
, m_hnsw(nullptr)
|
|
{
|
|
m_filePath = MySettings::globalInstance()->modelPath()
|
|
+ QString("embeddings_v%1.dat").arg(EMBEDDINGS_VERSION);
|
|
}
|
|
|
|
Embeddings::~Embeddings()
|
|
{
|
|
delete m_hnsw;
|
|
m_hnsw = nullptr;
|
|
delete m_space;
|
|
m_space = nullptr;
|
|
}
|
|
|
|
bool Embeddings::load()
|
|
{
|
|
QFileInfo info(m_filePath);
|
|
if (!info.exists()) {
|
|
qWarning() << "ERROR: loading embeddings file does not exist" << m_filePath;
|
|
return false;
|
|
}
|
|
|
|
if (!info.isReadable()) {
|
|
qWarning() << "ERROR: loading embeddings file is not readable" << m_filePath;
|
|
return false;
|
|
}
|
|
|
|
if (!info.isWritable()) {
|
|
qWarning() << "ERROR: loading embeddings file is not writeable" << m_filePath;
|
|
return false;
|
|
}
|
|
|
|
try {
|
|
m_space = new hnswlib::InnerProductSpace(s_dim);
|
|
m_hnsw = new hnswlib::HierarchicalNSW<float>(m_space, m_filePath.toStdString(), s_M, s_ef_construction);
|
|
} catch (const std::exception &e) {
|
|
qWarning() << "ERROR: could not load hnswlib index:" << e.what();
|
|
return false;
|
|
}
|
|
return isLoaded();
|
|
}
|
|
|
|
bool Embeddings::load(qint64 maxElements)
|
|
{
|
|
try {
|
|
m_space = new hnswlib::InnerProductSpace(s_dim);
|
|
m_hnsw = new hnswlib::HierarchicalNSW<float>(m_space, maxElements, s_M, s_ef_construction);
|
|
} catch (const std::exception &e) {
|
|
qWarning() << "ERROR: could not create hnswlib index:" << e.what();
|
|
return false;
|
|
}
|
|
return isLoaded();
|
|
}
|
|
|
|
bool Embeddings::save()
|
|
{
|
|
if (!isLoaded())
|
|
return false;
|
|
try {
|
|
m_hnsw->saveIndex(m_filePath.toStdString());
|
|
} catch (const std::exception &e) {
|
|
qWarning() << "ERROR: could not save hnswlib index:" << e.what();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Embeddings::isLoaded() const
|
|
{
|
|
return m_hnsw != nullptr;
|
|
}
|
|
|
|
bool Embeddings::fileExists() const
|
|
{
|
|
QFileInfo info(m_filePath);
|
|
return info.exists();
|
|
}
|
|
|
|
bool Embeddings::resize(qint64 size)
|
|
{
|
|
if (!isLoaded()) {
|
|
qWarning() << "ERROR: attempting to resize an embedding when the embeddings are not open!";
|
|
return false;
|
|
}
|
|
|
|
Q_ASSERT(m_hnsw);
|
|
try {
|
|
m_hnsw->resizeIndex(size);
|
|
} catch (const std::exception &e) {
|
|
qWarning() << "ERROR: could not resize hnswlib index:" << e.what();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Embeddings::add(const std::vector<float> &embedding, qint64 label)
|
|
{
|
|
if (!isLoaded()) {
|
|
bool success = load(500);
|
|
if (!success) {
|
|
qWarning() << "ERROR: attempting to add an embedding when the embeddings are not open!";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Q_ASSERT(m_hnsw);
|
|
if (m_hnsw->cur_element_count + 1 > m_hnsw->max_elements_) {
|
|
if (!resize(m_hnsw->max_elements_ + 500)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
try {
|
|
m_hnsw->addPoint(embedding.data(), label, false);
|
|
} catch (const std::exception &e) {
|
|
qWarning() << "ERROR: could not add embedding to hnswlib index:" << e.what();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Embeddings::remove(qint64 label)
|
|
{
|
|
if (!isLoaded()) {
|
|
qWarning() << "ERROR: attempting to remove an embedding when the embeddings are not open!";
|
|
return;
|
|
}
|
|
|
|
Q_ASSERT(m_hnsw);
|
|
try {
|
|
m_hnsw->markDelete(label);
|
|
} catch (const std::exception &e) {
|
|
qWarning() << "ERROR: could not add remove embedding from hnswlib index:" << e.what();
|
|
}
|
|
}
|
|
|
|
void Embeddings::clear()
|
|
{
|
|
delete m_hnsw;
|
|
m_hnsw = nullptr;
|
|
delete m_space;
|
|
m_space = nullptr;
|
|
}
|
|
|
|
std::vector<qint64> Embeddings::search(const std::vector<float> &embedding, int K)
|
|
{
|
|
if (!isLoaded())
|
|
return {};
|
|
|
|
Q_ASSERT(m_hnsw);
|
|
std::priority_queue<std::pair<float, hnswlib::labeltype>> result;
|
|
try {
|
|
result = m_hnsw->searchKnn(embedding.data(), K);
|
|
} catch (const std::exception &e) {
|
|
qWarning() << "ERROR: could not search hnswlib index:" << e.what();
|
|
return {};
|
|
}
|
|
|
|
std::vector<qint64> neighbors;
|
|
neighbors.reserve(K);
|
|
|
|
while(!result.empty()) {
|
|
neighbors.push_back(result.top().second);
|
|
result.pop();
|
|
}
|
|
|
|
// Reverse the neighbors, as the top of the priority queue is the farthest neighbor.
|
|
std::reverse(neighbors.begin(), neighbors.end());
|
|
|
|
return neighbors;
|
|
}
|