mirror of
https://github.com/nomic-ai/gpt4all
synced 2024-11-18 03:25:46 +00:00
bbcee1ced5
Improves output quality by making these tokenizers more closely match the behavior of the huggingface `tokenizers` based BPE tokenizers these models were trained with. Featuring: * Fixed unicode handling (via ICU) * Fixed BPE token merge handling * Complete added vocabulary handling
146 lines
5.0 KiB
C++
146 lines
5.0 KiB
C++
#include "utils.h"
|
|
#include "tokenizer/bpe.h"
|
|
#include "tokenizer/mpt_tokenizer_config.h"
|
|
#include "tokenizer/gptj_tokenizer_config.h"
|
|
|
|
#include <fstream>
|
|
#include <regex>
|
|
#include <stdexcept>
|
|
|
|
void get_bpecpp_tokenizer(const TokenizerType ttype, std::unique_ptr<bpecpp::BPE>& bpe, std::unique_ptr<bpecpp::AdditionalVocabAdapter>& av) {
|
|
std::vector<bpecpp::additional_vocab_item> avis;
|
|
std::unordered_map<std::string_view, uint32_t> vocab;
|
|
std::vector<std::pair<std::string_view, std::string_view>> merges;
|
|
|
|
uint32_t tok_id = 0;
|
|
switch (ttype) {
|
|
case TokenizerType::MPT_CHAT:
|
|
avis.push_back({ .id = 50277, .content = std::string_view("<|im_start|>"), .special = true });
|
|
avis.push_back({ .id = 50278, .content = std::string_view("<|im_end|>"), .special = true });
|
|
case TokenizerType::MPT:
|
|
for (auto avi_e: mpt_additional_vocab) {
|
|
avis.push_back({avi_e.id, avi_e.content.into(mpt_buffer), avi_e.special});
|
|
}
|
|
for (auto merge: mpt_merges) {
|
|
merges.push_back({merge.first.into(mpt_buffer), merge.second.into(mpt_buffer)});
|
|
}
|
|
for (auto bufref: mpt_vocab) {
|
|
vocab.insert({bufref.into(mpt_buffer), tok_id++});
|
|
}
|
|
break;
|
|
case TokenizerType::GPTJ:
|
|
for (auto avi_e: gptj_additional_vocab) {
|
|
avis.push_back({avi_e.id, avi_e.content.into(gptj_buffer), avi_e.special});
|
|
}
|
|
for (auto merge: gptj_merges) {
|
|
merges.push_back({merge.first.into(gptj_buffer), merge.second.into(gptj_buffer)});
|
|
}
|
|
for (auto bufref: gptj_vocab) {
|
|
vocab.insert({bufref.into(gptj_buffer), tok_id++});
|
|
}
|
|
break;
|
|
default:
|
|
throw std::invalid_argument("invalid tokenizer type");
|
|
}
|
|
av = std::make_unique<bpecpp::AdditionalVocabAdapter>(avis);
|
|
bpe = std::make_unique<bpecpp::BPE>(vocab, merges);
|
|
}
|
|
|
|
gpt_vocab::id gpt_sample_top_k_top_p(
|
|
const gpt_vocab & vocab,
|
|
const size_t actualVocabSize,
|
|
const int32_t * last_n_tokens_data,
|
|
int last_n_tokens_size,
|
|
const std::vector<float> logits,
|
|
int top_k,
|
|
double top_p,
|
|
double temp,
|
|
float repeat_penalty,
|
|
std::mt19937 & rng) {
|
|
int n_logits = actualVocabSize;
|
|
|
|
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
|
|
const auto * plogits = logits.data() + logits.size() - n_logits;
|
|
|
|
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
|
logits_id.reserve(n_logits);
|
|
|
|
{
|
|
const float scale = 1.0f/temp;
|
|
for (int i = 0; i < n_logits; ++i) {
|
|
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
|
|
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
|
|
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
|
|
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
|
|
if (plogits[i] < 0.0f) {
|
|
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
|
|
} else {
|
|
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
|
|
}
|
|
} else {
|
|
logits_id.push_back(std::make_pair(plogits[i]*scale, i));
|
|
}
|
|
}
|
|
}
|
|
|
|
// find the top K tokens
|
|
std::partial_sort(
|
|
logits_id.begin(),
|
|
logits_id.begin() + top_k, logits_id.end(),
|
|
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
|
return a.first > b.first;
|
|
});
|
|
|
|
logits_id.resize(top_k);
|
|
|
|
double maxl = -INFINITY;
|
|
for (const auto & kv : logits_id) {
|
|
maxl = std::max(maxl, kv.first);
|
|
}
|
|
|
|
// compute probs for the top K tokens
|
|
std::vector<double> probs;
|
|
probs.reserve(logits_id.size());
|
|
|
|
double sum = 0.0;
|
|
for (const auto & kv : logits_id) {
|
|
double p = exp(kv.first - maxl);
|
|
probs.push_back(p);
|
|
sum += p;
|
|
}
|
|
|
|
// normalize the probs
|
|
for (auto & p : probs) {
|
|
p /= sum;
|
|
}
|
|
|
|
if (top_p < 1.0f) {
|
|
double cumsum = 0.0f;
|
|
for (int i = 0; i < top_k; i++) {
|
|
cumsum += probs[i];
|
|
if (cumsum >= top_p) {
|
|
top_k = i + 1;
|
|
probs.resize(top_k);
|
|
logits_id.resize(top_k);
|
|
break;
|
|
}
|
|
}
|
|
|
|
cumsum = 1.0/cumsum;
|
|
for (int i = 0; i < (int) probs.size(); i++) {
|
|
probs[i] *= cumsum;
|
|
}
|
|
}
|
|
|
|
//printf("\n");
|
|
//for (int i = 0; i < (int) probs.size(); i++) {
|
|
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
|
//}
|
|
//exit(0);
|
|
|
|
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
|
int idx = dist(rng);
|
|
|
|
return logits_id[idx].second;
|
|
}
|