mirror of
https://github.com/nomic-ai/gpt4all
synced 2024-11-10 01:10:35 +00:00
46 lines
1.0 KiB
C++
46 lines
1.0 KiB
C++
#ifndef EMBEDDINGS_H
|
|
#define EMBEDDINGS_H
|
|
|
|
#include <QObject>
|
|
|
|
namespace hnswlib {
|
|
template <typename T>
|
|
class HierarchicalNSW;
|
|
class InnerProductSpace;
|
|
}
|
|
|
|
class Embeddings : public QObject
|
|
{
|
|
Q_OBJECT
|
|
public:
|
|
Embeddings(QObject *parent);
|
|
virtual ~Embeddings();
|
|
|
|
bool load();
|
|
bool load(qint64 maxElements);
|
|
bool save();
|
|
bool isLoaded() const;
|
|
bool fileExists() const;
|
|
bool resize(qint64 size);
|
|
|
|
// Adds the embedding and returns the label used
|
|
bool add(const std::vector<float> &embedding, qint64 label);
|
|
|
|
// Removes the embedding at label by marking it as unused
|
|
void remove(qint64 label);
|
|
|
|
// Clears the embeddings
|
|
void clear();
|
|
|
|
// Performs a nearest neighbor search of the embeddings and returns a vector of labels
|
|
// for the K nearest neighbors of the given embedding
|
|
std::vector<qint64> search(const std::vector<float> &embedding, int K);
|
|
|
|
private:
|
|
QString m_filePath;
|
|
hnswlib::InnerProductSpace *m_space;
|
|
hnswlib::HierarchicalNSW<float> *m_hnsw;
|
|
};
|
|
|
|
#endif // EMBEDDINGS_H
|