gpt4all/gpt4all-bindings/typescript/index.cc
Jacob Nguyen da95bcfb4b
vulkan support for typescript bindings, gguf support (#1390)
* adding some native methods to cpp wrapper

* gpu seems to work

* typings and add availibleGpus method

* fix spelling

* fix syntax

* more

* normalize methods to conform to py

* remove extra dynamic linker deps when building with vulkan

* bump python version (library linking fix)

* Don't link against libvulkan.

* vulkan python bindings on windows fixes

* Bring the vulkan backend to the GUI.

* When device is Auto (the default) then we will only consider discrete GPU's otherwise fallback to CPU.

* Show the device we're currently using.

* Fix up the name and formatting.

* init at most one vulkan device, submodule update

fixes issues w/ multiple of the same gpu

* Update the submodule.

* Add version 2.4.15 and bump the version number.

* Fix a bug where we're not properly falling back to CPU.

* Sync to a newer version of llama.cpp with bugfix for vulkan.

* Report the actual device we're using.

* Only show GPU when we're actually using it.

* Bump to new llama with new bugfix.

* Release notes for v2.4.16 and bump the version.

* Fallback to CPU more robustly.

* Release notes for v2.4.17 and bump the version.

* Bump the Python version to python-v1.0.12 to restrict the quants that vulkan recognizes.

* Link against ggml in bin so we can get the available devices without loading a model.

* Send actual and requested device info for those who have opt-in.

* Actually bump the version.

* Release notes for v2.4.18 and bump the version.

* Fix for crashes on systems where vulkan is not installed properly.

* Release notes for v2.4.19 and bump the version.

* fix typings and vulkan build works on win

* Add flatpak manifest

* Remove unnecessary stuffs from manifest

* Update to 2.4.19

* appdata: update software description

* Latest rebase on llama.cpp with gguf support.

* macos build fixes

* llamamodel: metal supports all quantization types now

* gpt4all.py: GGUF

* pyllmodel: print specific error message

* backend: port BERT to GGUF

* backend: port MPT to GGUF

* backend: port Replit to GGUF

* backend: use gguf branch of llama.cpp-mainline

* backend: use llamamodel.cpp for StarCoder

* conversion scripts: cleanup

* convert scripts: load model as late as possible

* convert_mpt_hf_to_gguf.py: better tokenizer decoding

* backend: use llamamodel.cpp for Falcon

* convert scripts: make them directly executable

* fix references to removed model types

* modellist: fix the system prompt

* backend: port GPT-J to GGUF

* gpt-j: update inference to match latest llama.cpp insights

- Use F16 KV cache
- Store transposed V in the cache
- Avoid unnecessary Q copy

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

ggml upstream commit 0265f0813492602fec0e1159fe61de1bf0ccaf78

* chatllm: grammar fix

* convert scripts: use bytes_to_unicode from transformers

* convert scripts: make gptj script executable

* convert scripts: add feed-forward length for better compatiblilty

This GGUF key is used by all llama.cpp models with upstream support.

* gptj: remove unused variables

* Refactor for subgroups on mat * vec kernel.

* Add q6_k kernels for vulkan.

* python binding: print debug message to stderr

* Fix regenerate button to be deterministic and bump the llama version to latest we have for gguf.

* Bump to the latest fixes for vulkan in llama.

* llamamodel: fix static vector in LLamaModel::endTokens

* Switch to new models2.json for new gguf release and bump our version to
2.5.0.

* Bump to latest llama/gguf branch.

* chat: report reason for fallback to CPU

* chat: make sure to clear fallback reason on success

* more accurate fallback descriptions

* differentiate between init failure and unsupported models

* backend: do not use Vulkan with non-LLaMA models

* Add q8_0 kernels to kompute shaders and bump to latest llama/gguf.

* backend: fix build with Visual Studio generator

Use the $<CONFIG> generator expression instead of CMAKE_BUILD_TYPE. This
is needed because Visual Studio is a multi-configuration generator, so
we do not know what the build type will be until `cmake --build` is
called.

Fixes #1470

* remove old llama.cpp submodules

* Reorder and refresh our models2.json.

* rebase on newer llama.cpp

* python/embed4all: use gguf model, allow passing kwargs/overriding model

* Add starcoder, rift and sbert to our models2.json.

* Push a new version number for llmodel backend now that it is based on gguf.

* fix stray comma in models2.json

Signed-off-by: Aaron Miller <apage43@ninjawhale.com>

* Speculative fix for build on mac.

* chat: clearer CPU fallback messages

* Fix crasher with an empty string for prompt template.

* Update the language here to avoid misunderstanding.

* added EM German Mistral Model

* make codespell happy

* issue template: remove "Related Components" section

* cmake: install the GPT-J plugin (#1487)

* Do not delete saved chats if we fail to serialize properly.

* Restore state from text if necessary.

* Another codespell attempted fix.

* llmodel: do not call magic_match unless build variant is correct (#1488)

* chatllm: do not write uninitialized data to stream (#1486)

* mat*mat for q4_0, q8_0

* do not process prompts on gpu yet

* python: support Path in GPT4All.__init__ (#1462)

* llmodel: print an error if the CPU does not support AVX (#1499)

* python bindings should be quiet by default

* disable llama.cpp logging unless GPT4ALL_VERBOSE_LLAMACPP envvar is
  nonempty
* make verbose flag for retrieve_model default false (but also be
  overridable via gpt4all constructor)

should be able to run a basic test:

```python
import gpt4all
model = gpt4all.GPT4All('/Users/aaron/Downloads/rift-coder-v0-7b-q4_0.gguf')
print(model.generate('def fib(n):'))
```

and see no non-model output when successful

* python: always check status code of HTTP responses (#1502)

* Always save chats to disk, but save them as text by default. This also changes
the UI behavior to always open a 'New Chat' and setting it as current instead
of setting a restored chat as current. This improves usability by not requiring
the user to wait if they want to immediately start chatting.

* Update README.md

Signed-off-by: umarmnaq <102142660+umarmnaq@users.noreply.github.com>

* fix embed4all filename

https://discordapp.com/channels/1076964370942267462/1093558720690143283/1161778216462192692

Signed-off-by: Aaron Miller <apage43@ninjawhale.com>

* Improves Java API signatures maintaining back compatibility

* python: replace deprecated pkg_resources with importlib (#1505)

* Updated chat wishlist (#1351)

* q6k, q4_1 mat*mat

* update mini-orca 3b to gguf2, license

Signed-off-by: Aaron Miller <apage43@ninjawhale.com>

* convert scripts: fix AutoConfig typo (#1512)

* publish config https://docs.npmjs.com/cli/v9/configuring-npm/package-json#publishconfig (#1375)

merge into my branch

* fix appendBin

* fix gpu not initializing first

* sync up

* progress, still wip on destructor

* some detection work

* untested dispose method

* add js side of dispose

* Update gpt4all-bindings/typescript/index.cc

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com>

* Update gpt4all-bindings/typescript/index.cc

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com>

* Update gpt4all-bindings/typescript/index.cc

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com>

* Update gpt4all-bindings/typescript/src/gpt4all.d.ts

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com>

* Update gpt4all-bindings/typescript/src/gpt4all.js

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com>

* Update gpt4all-bindings/typescript/src/util.js

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com>

* fix tests

* fix circleci for nodejs

* bump version

---------

Signed-off-by: Aaron Miller <apage43@ninjawhale.com>
Signed-off-by: umarmnaq <102142660+umarmnaq@users.noreply.github.com>
Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com>
Co-authored-by: Aaron Miller <apage43@ninjawhale.com>
Co-authored-by: Adam Treat <treat.adam@gmail.com>
Co-authored-by: Akarshan Biswas <akarshan.biswas@gmail.com>
Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Jan Philipp Harries <jpdus@users.noreply.github.com>
Co-authored-by: umarmnaq <102142660+umarmnaq@users.noreply.github.com>
Co-authored-by: Alex Soto <asotobu@gmail.com>
Co-authored-by: niansa/tuxifan <tuxifan@posteo.de>
2023-11-01 14:38:58 -05:00

354 lines
14 KiB
C++

#include "index.h"
Napi::Function NodeModelWrapper::GetClass(Napi::Env env) {
Napi::Function self = DefineClass(env, "LLModel", {
InstanceMethod("type", &NodeModelWrapper::getType),
InstanceMethod("isModelLoaded", &NodeModelWrapper::IsModelLoaded),
InstanceMethod("name", &NodeModelWrapper::getName),
InstanceMethod("stateSize", &NodeModelWrapper::StateSize),
InstanceMethod("raw_prompt", &NodeModelWrapper::Prompt),
InstanceMethod("setThreadCount", &NodeModelWrapper::SetThreadCount),
InstanceMethod("embed", &NodeModelWrapper::GenerateEmbedding),
InstanceMethod("threadCount", &NodeModelWrapper::ThreadCount),
InstanceMethod("getLibraryPath", &NodeModelWrapper::GetLibraryPath),
InstanceMethod("initGpuByString", &NodeModelWrapper::InitGpuByString),
InstanceMethod("hasGpuDevice", &NodeModelWrapper::HasGpuDevice),
InstanceMethod("listGpu", &NodeModelWrapper::GetGpuDevices),
InstanceMethod("memoryNeeded", &NodeModelWrapper::GetRequiredMemory),
InstanceMethod("dispose", &NodeModelWrapper::Dispose)
});
// Keep a static reference to the constructor
//
Napi::FunctionReference* constructor = new Napi::FunctionReference();
*constructor = Napi::Persistent(self);
env.SetInstanceData(constructor);
return self;
}
Napi::Value NodeModelWrapper::GetRequiredMemory(const Napi::CallbackInfo& info)
{
auto env = info.Env();
return Napi::Number::New(env, static_cast<uint32_t>( llmodel_required_mem(GetInference(), full_model_path.c_str()) ));
}
Napi::Value NodeModelWrapper::GetGpuDevices(const Napi::CallbackInfo& info)
{
auto env = info.Env();
int num_devices = 0;
auto mem_size = llmodel_required_mem(GetInference(), full_model_path.c_str());
llmodel_gpu_device* all_devices = llmodel_available_gpu_devices(GetInference(), mem_size, &num_devices);
if(all_devices == nullptr) {
Napi::Error::New(
env,
"Unable to retrieve list of all GPU devices"
).ThrowAsJavaScriptException();
return env.Undefined();
}
auto js_array = Napi::Array::New(env, num_devices);
for(int i = 0; i < num_devices; ++i) {
auto gpu_device = all_devices[i];
/*
*
* struct llmodel_gpu_device {
int index = 0;
int type = 0; // same as VkPhysicalDeviceType
size_t heapSize = 0;
const char * name;
const char * vendor;
};
*
*/
Napi::Object js_gpu_device = Napi::Object::New(env);
js_gpu_device["index"] = uint32_t(gpu_device.index);
js_gpu_device["type"] = uint32_t(gpu_device.type);
js_gpu_device["heapSize"] = static_cast<uint32_t>( gpu_device.heapSize );
js_gpu_device["name"]= gpu_device.name;
js_gpu_device["vendor"] = gpu_device.vendor;
js_array[i] = js_gpu_device;
}
return js_array;
}
Napi::Value NodeModelWrapper::getType(const Napi::CallbackInfo& info)
{
if(type.empty()) {
return info.Env().Undefined();
}
return Napi::String::New(info.Env(), type);
}
Napi::Value NodeModelWrapper::InitGpuByString(const Napi::CallbackInfo& info)
{
auto env = info.Env();
uint32_t memory_required = info[0].As<Napi::Number>();
std::string gpu_device_identifier = info[1].As<Napi::String>();
size_t converted_value;
if(memory_required <= std::numeric_limits<size_t>::max()) {
converted_value = static_cast<size_t>(memory_required);
} else {
Napi::Error::New(
env,
"invalid number for memory size. Exceeded bounds for memory."
).ThrowAsJavaScriptException();
return env.Undefined();
}
auto result = llmodel_gpu_init_gpu_device_by_string(GetInference(), converted_value, gpu_device_identifier.c_str());
return Napi::Boolean::New(env, result);
}
Napi::Value NodeModelWrapper::HasGpuDevice(const Napi::CallbackInfo& info)
{
return Napi::Boolean::New(info.Env(), llmodel_has_gpu_device(GetInference()));
}
NodeModelWrapper::NodeModelWrapper(const Napi::CallbackInfo& info) : Napi::ObjectWrap<NodeModelWrapper>(info)
{
auto env = info.Env();
fs::path model_path;
std::string full_weight_path,
library_path = ".",
model_name,
device;
if(info[0].IsString()) {
model_path = info[0].As<Napi::String>().Utf8Value();
full_weight_path = model_path.string();
std::cout << "DEPRECATION: constructor accepts object now. Check docs for more.\n";
} else {
auto config_object = info[0].As<Napi::Object>();
model_name = config_object.Get("model_name").As<Napi::String>();
model_path = config_object.Get("model_path").As<Napi::String>().Utf8Value();
if(config_object.Has("model_type")) {
type = config_object.Get("model_type").As<Napi::String>();
}
full_weight_path = (model_path / fs::path(model_name)).string();
if(config_object.Has("library_path")) {
library_path = config_object.Get("library_path").As<Napi::String>();
} else {
library_path = ".";
}
device = config_object.Get("device").As<Napi::String>();
}
llmodel_set_implementation_search_path(library_path.c_str());
llmodel_error e = {
.message="looks good to me",
.code=0,
};
inference_ = llmodel_model_create2(full_weight_path.c_str(), "auto", &e);
if(e.code != 0) {
Napi::Error::New(env, e.message).ThrowAsJavaScriptException();
return;
}
if(GetInference() == nullptr) {
std::cerr << "Tried searching libraries in \"" << library_path << "\"" << std::endl;
std::cerr << "Tried searching for model weight in \"" << full_weight_path << "\"" << std::endl;
std::cerr << "Do you have runtime libraries installed?" << std::endl;
Napi::Error::New(env, "Had an issue creating llmodel object, inference is null").ThrowAsJavaScriptException();
return;
}
if(device != "cpu") {
size_t mem = llmodel_required_mem(GetInference(), full_weight_path.c_str());
if(mem == 0) {
std::cout << "WARNING: no memory needed. does this model support gpu?\n";
}
std::cout << "Initiating GPU\n";
std::cout << "Memory required estimation: " << mem << "\n";
auto success = llmodel_gpu_init_gpu_device_by_string(GetInference(), mem, device.c_str());
if(success) {
std::cout << "GPU init successfully\n";
} else {
std::cout << "WARNING: Failed to init GPU\n";
}
}
auto success = llmodel_loadModel(GetInference(), full_weight_path.c_str());
if(!success) {
Napi::Error::New(env, "Failed to load model at given path").ThrowAsJavaScriptException();
return;
}
name = model_name.empty() ? model_path.filename().string() : model_name;
full_model_path = full_weight_path;
};
// NodeModelWrapper::~NodeModelWrapper() {
// if(GetInference() != nullptr) {
// std::cout << "Debug: deleting model\n";
// llmodel_model_destroy(inference_);
// std::cout << (inference_ == nullptr);
// }
// }
// void NodeModelWrapper::Finalize(Napi::Env env) {
// if(inference_ != nullptr) {
// std::cout << "Debug: deleting model\n";
//
// }
// }
Napi::Value NodeModelWrapper::IsModelLoaded(const Napi::CallbackInfo& info) {
return Napi::Boolean::New(info.Env(), llmodel_isModelLoaded(GetInference()));
}
Napi::Value NodeModelWrapper::StateSize(const Napi::CallbackInfo& info) {
// Implement the binding for the stateSize method
return Napi::Number::New(info.Env(), static_cast<int64_t>(llmodel_get_state_size(GetInference())));
}
Napi::Value NodeModelWrapper::GenerateEmbedding(const Napi::CallbackInfo& info) {
auto env = info.Env();
std::string text = info[0].As<Napi::String>().Utf8Value();
size_t embedding_size = 0;
float* arr = llmodel_embedding(GetInference(), text.c_str(), &embedding_size);
if(arr == nullptr) {
Napi::Error::New(
env,
"Cannot embed. native embedder returned 'nullptr'"
).ThrowAsJavaScriptException();
return env.Undefined();
}
if(embedding_size == 0 && text.size() != 0 ) {
std::cout << "Warning: embedding length 0 but input text length > 0" << std::endl;
}
Napi::Float32Array js_array = Napi::Float32Array::New(env, embedding_size);
for (size_t i = 0; i < embedding_size; ++i) {
float element = *(arr + i);
js_array[i] = element;
}
llmodel_free_embedding(arr);
return js_array;
}
/**
* Generate a response using the model.
* @param model A pointer to the llmodel_model instance.
* @param prompt A string representing the input prompt.
* @param prompt_callback A callback function for handling the processing of prompt.
* @param response_callback A callback function for handling the generated response.
* @param recalculate_callback A callback function for handling recalculation requests.
* @param ctx A pointer to the llmodel_prompt_context structure.
*/
Napi::Value NodeModelWrapper::Prompt(const Napi::CallbackInfo& info) {
auto env = info.Env();
std::string question;
if(info[0].IsString()) {
question = info[0].As<Napi::String>().Utf8Value();
} else {
Napi::Error::New(info.Env(), "invalid string argument").ThrowAsJavaScriptException();
return info.Env().Undefined();
}
//defaults copied from python bindings
llmodel_prompt_context promptContext = {
.logits = nullptr,
.tokens = nullptr,
.n_past = 0,
.n_ctx = 1024,
.n_predict = 128,
.top_k = 40,
.top_p = 0.9f,
.temp = 0.72f,
.n_batch = 8,
.repeat_penalty = 1.0f,
.repeat_last_n = 10,
.context_erase = 0.5
};
if(info[1].IsObject())
{
auto inputObject = info[1].As<Napi::Object>();
// Extract and assign the properties
if (inputObject.Has("logits") || inputObject.Has("tokens")) {
Napi::Error::New(info.Env(), "Invalid input: 'logits' or 'tokens' properties are not allowed").ThrowAsJavaScriptException();
return info.Env().Undefined();
}
// Assign the remaining properties
if(inputObject.Has("n_past"))
promptContext.n_past = inputObject.Get("n_past").As<Napi::Number>().Int32Value();
if(inputObject.Has("n_ctx"))
promptContext.n_ctx = inputObject.Get("n_ctx").As<Napi::Number>().Int32Value();
if(inputObject.Has("n_predict"))
promptContext.n_predict = inputObject.Get("n_predict").As<Napi::Number>().Int32Value();
if(inputObject.Has("top_k"))
promptContext.top_k = inputObject.Get("top_k").As<Napi::Number>().Int32Value();
if(inputObject.Has("top_p"))
promptContext.top_p = inputObject.Get("top_p").As<Napi::Number>().FloatValue();
if(inputObject.Has("temp"))
promptContext.temp = inputObject.Get("temp").As<Napi::Number>().FloatValue();
if(inputObject.Has("n_batch"))
promptContext.n_batch = inputObject.Get("n_batch").As<Napi::Number>().Int32Value();
if(inputObject.Has("repeat_penalty"))
promptContext.repeat_penalty = inputObject.Get("repeat_penalty").As<Napi::Number>().FloatValue();
if(inputObject.Has("repeat_last_n"))
promptContext.repeat_last_n = inputObject.Get("repeat_last_n").As<Napi::Number>().Int32Value();
if(inputObject.Has("context_erase"))
promptContext.context_erase = inputObject.Get("context_erase").As<Napi::Number>().FloatValue();
}
//copy to protect llmodel resources when splitting to new thread
llmodel_prompt_context copiedPrompt = promptContext;
std::string copiedQuestion = question;
PromptWorkContext pc = {
copiedQuestion,
inference_,
copiedPrompt,
""
};
auto threadSafeContext = new TsfnContext(env, pc);
threadSafeContext->tsfn = Napi::ThreadSafeFunction::New(
env, // Environment
info[2].As<Napi::Function>(), // JS function from caller
"PromptCallback", // Resource name
0, // Max queue size (0 = unlimited).
1, // Initial thread count
threadSafeContext, // Context,
FinalizerCallback, // Finalizer
(void*)nullptr // Finalizer data
);
threadSafeContext->nativeThread = std::thread(threadEntry, threadSafeContext);
return threadSafeContext->deferred_.Promise();
}
void NodeModelWrapper::Dispose(const Napi::CallbackInfo& info) {
llmodel_model_destroy(inference_);
}
void NodeModelWrapper::SetThreadCount(const Napi::CallbackInfo& info) {
if(info[0].IsNumber()) {
llmodel_setThreadCount(GetInference(), info[0].As<Napi::Number>().Int64Value());
} else {
Napi::Error::New(info.Env(), "Could not set thread count: argument 1 is NaN").ThrowAsJavaScriptException();
return;
}
}
Napi::Value NodeModelWrapper::getName(const Napi::CallbackInfo& info) {
return Napi::String::New(info.Env(), name);
}
Napi::Value NodeModelWrapper::ThreadCount(const Napi::CallbackInfo& info) {
return Napi::Number::New(info.Env(), llmodel_threadCount(GetInference()));
}
Napi::Value NodeModelWrapper::GetLibraryPath(const Napi::CallbackInfo& info) {
return Napi::String::New(info.Env(),
llmodel_get_implementation_search_path());
}
llmodel_model NodeModelWrapper::GetInference() {
return inference_;
}
//Exports Bindings
Napi::Object Init(Napi::Env env, Napi::Object exports) {
exports["LLModel"] = NodeModelWrapper::GetClass(env);
return exports;
}
NODE_API_MODULE(NODE_GYP_MODULE_NAME, Init)