gpt4all/gpt4all-backend/llamamodel.cpp
2023-05-22 08:54:46 -04:00

277 lines
8.9 KiB
C++

#include "llamamodel.h"
#include "llama.cpp/examples/common.h"
#include "llama.cpp/llama.h"
#include "llama.cpp/ggml.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#if defined(_WIN32) && defined(_MSC_VER)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h>
#else
#include <unistd.h>
#endif
#include <random>
#include <thread>
#include <unordered_set>
struct LLamaPrivate {
const std::string modelPath;
bool modelLoaded;
llama_context *ctx = nullptr;
llama_context_params params;
int64_t n_threads = 0;
};
LLamaModel::LLamaModel()
: d_ptr(new LLamaPrivate) {
d_ptr->modelLoaded = false;
}
bool LLamaModel::loadModel(const std::string &modelPath)
{
// load the model
d_ptr->params = llama_context_default_params();
gpt_params params;
d_ptr->params.n_ctx = 2048;
d_ptr->params.n_parts = params.n_parts;
d_ptr->params.seed = params.seed;
d_ptr->params.f16_kv = params.memory_f16;
d_ptr->params.use_mmap = params.use_mmap;
#if defined (__APPLE__)
d_ptr->params.use_mlock = true;
#else
d_ptr->params.use_mlock = params.use_mlock;
#endif
d_ptr->ctx = llama_init_from_file(modelPath.c_str(), d_ptr->params);
if (!d_ptr->ctx) {
std::cerr << "LLAMA ERROR: failed to load model from " << modelPath << std::endl;
return false;
}
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
d_ptr->modelLoaded = true;
fflush(stderr);
return true;
}
void LLamaModel::setThreadCount(int32_t n_threads) {
d_ptr->n_threads = n_threads;
}
int32_t LLamaModel::threadCount() const
{
return d_ptr->n_threads;
}
LLamaModel::~LLamaModel()
{
llama_free(d_ptr->ctx);
}
bool LLamaModel::isModelLoaded() const
{
return d_ptr->modelLoaded;
}
size_t LLamaModel::stateSize() const
{
return llama_get_state_size(d_ptr->ctx);
}
size_t LLamaModel::saveState(uint8_t *dest) const
{
return llama_copy_state_data(d_ptr->ctx, dest);
}
size_t LLamaModel::restoreState(const uint8_t *src)
{
return llama_set_state_data(d_ptr->ctx, src);
}
void LLamaModel::prompt(const std::string &prompt,
std::function<bool(int32_t)> promptCallback,
std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &promptCtx) {
if (!isModelLoaded()) {
std::cerr << "LLAMA ERROR: prompt won't work with an unloaded model!\n";
return;
}
gpt_params params;
params.prompt = prompt;
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
// tokenize the prompt
auto embd_inp = ::llama_tokenize(d_ptr->ctx, params.prompt, false);
// save the context size
promptCtx.n_ctx = llama_n_ctx(d_ptr->ctx);
if ((int) embd_inp.size() > promptCtx.n_ctx - 4) {
responseCallback(-1, "The prompt size exceeds the context window size and cannot be processed.");
std::cerr << "LLAMA ERROR: The prompt is" << embd_inp.size() <<
"tokens and the context window is" << promptCtx.n_ctx << "!\n";
return;
}
promptCtx.n_predict = std::min(promptCtx.n_predict, promptCtx.n_ctx - (int) embd_inp.size());
promptCtx.n_past = std::min(promptCtx.n_past, promptCtx.n_ctx);
// number of tokens to keep when resetting context
params.n_keep = (int)embd_inp.size();
// process the prompt in batches
size_t i = 0;
const int64_t t_start_prompt_us = ggml_time_us();
while (i < embd_inp.size()) {
size_t batch_end = std::min(i + promptCtx.n_batch, embd_inp.size());
std::vector<llama_token> batch(embd_inp.begin() + i, embd_inp.begin() + batch_end);
// Check if the context has run out...
if (promptCtx.n_past + batch.size() > promptCtx.n_ctx) {
const int32_t erasePoint = promptCtx.n_ctx * promptCtx.contextErase;
// Erase the first percentage of context from the tokens...
std::cerr << "LLAMA: reached the end of the context window so resizing\n";
promptCtx.tokens.erase(promptCtx.tokens.begin(), promptCtx.tokens.begin() + erasePoint);
promptCtx.n_past = promptCtx.tokens.size();
recalculateContext(promptCtx, recalculateCallback);
assert(promptCtx.n_past + batch.size() <= promptCtx.n_ctx);
}
if (llama_eval(d_ptr->ctx, batch.data(), batch.size(), promptCtx.n_past, d_ptr->n_threads)) {
std::cerr << "LLAMA ERROR: Failed to process prompt\n";
return;
}
size_t tokens = batch_end - i;
for (size_t t = 0; t < tokens; ++t) {
if (promptCtx.tokens.size() == promptCtx.n_ctx)
promptCtx.tokens.erase(promptCtx.tokens.begin());
promptCtx.tokens.push_back(batch.at(t));
if (!promptCallback(batch.at(t)))
return;
}
promptCtx.n_past += batch.size();
i = batch_end;
}
std::string cachedResponse;
std::vector<llama_token> cachedTokens;
std::unordered_set<std::string> reversePrompts
= { "### Instruction", "### Prompt", "### Response", "### Human", "### Assistant" };
// predict next tokens
int32_t totalPredictions = 0;
for (int i = 0; i < promptCtx.n_predict; i++) {
// sample next token
const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
llama_token id = llama_sample_top_p_top_k(d_ptr->ctx,
promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
n_prev_toks, promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
promptCtx.repeat_penalty);
// Check if the context has run out...
if (promptCtx.n_past + 1 > promptCtx.n_ctx) {
const int32_t erasePoint = promptCtx.n_ctx * promptCtx.contextErase;
// Erase the first percentage of context from the tokens...
std::cerr << "LLAMA: reached the end of the context window so resizing\n";
promptCtx.tokens.erase(promptCtx.tokens.begin(), promptCtx.tokens.begin() + erasePoint);
promptCtx.n_past = promptCtx.tokens.size();
recalculateContext(promptCtx, recalculateCallback);
assert(promptCtx.n_past + 1 <= promptCtx.n_ctx);
}
if (llama_eval(d_ptr->ctx, &id, 1, promptCtx.n_past, d_ptr->n_threads)) {
std::cerr << "LLAMA ERROR: Failed to predict next token\n";
return;
}
promptCtx.n_past += 1;
// display text
++totalPredictions;
if (id == llama_token_eos())
return;
const std::string str = llama_token_to_str(d_ptr->ctx, id);
// Check if the provided str is part of our reverse prompts
bool foundPartialReversePrompt = false;
const std::string completed = cachedResponse + str;
if (reversePrompts.find(completed) != reversePrompts.end()) {
return;
}
// Check if it partially matches our reverse prompts and if so, cache
for (auto s : reversePrompts) {
if (s.compare(0, completed.size(), completed) == 0) {
foundPartialReversePrompt = true;
cachedResponse = completed;
break;
}
}
// Regardless the token gets added to our cache
cachedTokens.push_back(id);
// Continue if we have found a partial match
if (foundPartialReversePrompt)
continue;
// Empty the cache
for (auto t : cachedTokens) {
if (promptCtx.tokens.size() == promptCtx.n_ctx)
promptCtx.tokens.erase(promptCtx.tokens.begin());
promptCtx.tokens.push_back(t);
if (!responseCallback(t, llama_token_to_str(d_ptr->ctx, t)))
return;
}
cachedTokens.clear();
}
}
void LLamaModel::recalculateContext(PromptContext &promptCtx, std::function<bool(bool)> recalculate)
{
size_t i = 0;
promptCtx.n_past = 0;
while (i < promptCtx.tokens.size()) {
size_t batch_end = std::min(i + promptCtx.n_batch, promptCtx.tokens.size());
std::vector<llama_token> batch(promptCtx.tokens.begin() + i, promptCtx.tokens.begin() + batch_end);
assert(promptCtx.n_past + batch.size() <= promptCtx.n_ctx);
if (llama_eval(d_ptr->ctx, batch.data(), batch.size(), promptCtx.n_past, d_ptr->n_threads)) {
std::cerr << "LLAMA ERROR: Failed to process prompt\n";
goto stop_generating;
}
promptCtx.n_past += batch.size();
if (!recalculate(true))
goto stop_generating;
i = batch_end;
}
assert(promptCtx.n_past == promptCtx.tokens.size());
stop_generating:
recalculate(false);
}