mirror of
https://github.com/nomic-ai/gpt4all
synced 2024-11-02 09:40:42 +00:00
118 lines
4.2 KiB
Python
118 lines
4.2 KiB
Python
import glob
|
|
import torch
|
|
from datasets import load_dataset, concatenate_datasets
|
|
import os
|
|
from torch.utils.data import DataLoader
|
|
from transformers import DefaultDataCollator
|
|
|
|
|
|
|
|
def tokenize_inputs(config, tokenizer, examples):
|
|
max_length = config["max_length"]
|
|
input_ids = torch.full((len(examples["prompt"]), max_length), tokenizer.pad_token_id)
|
|
# ignore bos
|
|
newline_tokens = tokenizer("\n", return_tensors="pt")["input_ids"][0, 1:]
|
|
|
|
out = {"labels": [], "attention_mask": []}
|
|
for i, (prompt, response) in enumerate(zip(examples["prompt"], examples["response"])):
|
|
input_tokens = tokenizer(prompt, truncation=True, max_length=max_length // 2, return_tensors="pt")["input_ids"].squeeze()
|
|
input_len = len(input_tokens)
|
|
|
|
# plus one since we remove bos from response
|
|
# but we subtract one since we want to add eos token
|
|
remaining_tokens = max_length - input_len - len(newline_tokens) + 1
|
|
# remove bos
|
|
target_tokens = tokenizer(response, truncation=True, max_length=remaining_tokens, return_tensors="pt")["input_ids"].squeeze()[1:]
|
|
|
|
input_ids[i, :input_len] = input_tokens
|
|
# add newline between prompt and response
|
|
newline_plus_inputs = input_len + len(newline_tokens)
|
|
input_ids[i, input_len: newline_plus_inputs] = newline_tokens
|
|
|
|
# add target tokens, remove bos
|
|
input_ids[i, newline_plus_inputs: newline_plus_inputs + len(target_tokens)] = target_tokens
|
|
# add eos token, enforce stopping if we don't truncate
|
|
# we don't want long code to stop generating if truncated during training
|
|
if newline_plus_inputs + len(target_tokens) < max_length:
|
|
input_ids[i, newline_plus_inputs + len(target_tokens)] = tokenizer.eos_token_id
|
|
|
|
labels = input_ids[i].clone()
|
|
labels[: newline_plus_inputs] = -100
|
|
labels[labels == tokenizer.pad_token_id] = -100
|
|
# to debug this, can set all values == -100 to the pad token, then assert that tokenizer.decode(labels, skip_special_tokens=True).strip() == response
|
|
|
|
attention_mask = input_ids[i].ne(tokenizer.pad_token_id).int()
|
|
|
|
out["labels"].append(labels)
|
|
out["attention_mask"].append(attention_mask)
|
|
|
|
out["input_ids"] = input_ids
|
|
|
|
out = {k: torch.stack(v) if isinstance(v, list) else v for k, v in out.items()}
|
|
|
|
return out
|
|
|
|
|
|
def load_data(config, tokenizer):
|
|
dataset_path = config["dataset_path"]
|
|
|
|
if os.path.exists(dataset_path):
|
|
# check if path is a directory
|
|
if os.path.isdir(dataset_path):
|
|
files = glob.glob(os.path.join(dataset_path, "*_clean.jsonl"))
|
|
else:
|
|
files = [dataset_path]
|
|
|
|
print(f"Reading files {files}")
|
|
|
|
dataset = load_dataset("json", data_files=files, split="train")
|
|
|
|
else:
|
|
dataset = load_dataset(dataset_path)
|
|
|
|
uuids = load_dataset("json", data_files="watermark.jsonl", split="train")
|
|
dataset = dataset.train_test_split(test_size=.05, seed=config["seed"])
|
|
|
|
train_dataset, val_dataset = dataset["train"], dataset["test"]
|
|
|
|
train_dataset = concatenate_datasets([train_dataset, uuids])
|
|
train_dataset = train_dataset.shuffle(seed=config["seed"])
|
|
|
|
if config["streaming"] is False:
|
|
kwargs = {"num_proc": config["num_proc"]}
|
|
else:
|
|
kwargs = {}
|
|
|
|
# tokenize inputs and return labels and attention mask
|
|
train_dataset = train_dataset.map(
|
|
lambda ele: tokenize_inputs(config, tokenizer, ele),
|
|
batched=True,
|
|
remove_columns=["source", "prompt"],
|
|
**kwargs
|
|
)
|
|
val_dataset = val_dataset.map(
|
|
lambda ele: tokenize_inputs(config, tokenizer, ele),
|
|
batched=True,
|
|
remove_columns=["source", "prompt"],
|
|
**kwargs
|
|
)
|
|
|
|
train_dataset = train_dataset.with_format("torch")
|
|
val_dataset = val_dataset.with_format("torch")
|
|
|
|
# create dataloader with default data collator since we already have labels
|
|
|
|
train_dataloader = DataLoader(
|
|
train_dataset,
|
|
collate_fn=DefaultDataCollator(),
|
|
batch_size=config["batch_size"],
|
|
)
|
|
|
|
val_dataloader = DataLoader(
|
|
val_dataset,
|
|
collate_fn=DefaultDataCollator(),
|
|
batch_size=config["batch_size"],
|
|
)
|
|
|
|
return train_dataloader, val_dataloader
|