// Various helper functions and utilities #pragma once #include #include #include #include #include #include "tokenizer/bpe.h" // // CLI argument parsing // struct gpt_params { int32_t seed = -1; // RNG seed int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t n_predict = 200; // new tokens to predict // sampling parameters int32_t top_k = 40; float top_p = 0.9f; float temp = 0.9f; int32_t n_batch = 8; // batch size for prompt processing std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path std::string prompt; }; bool gpt_params_parse(int argc, char ** argv, gpt_params & params); void gpt_print_usage(int argc, char ** argv, const gpt_params & params); std::string gpt_random_prompt(std::mt19937 & rng); // // Vocab utils // struct gpt_vocab { using id = int32_t; using token = std::string; std::map token_to_id; std::map id_to_token; std::vector special_tokens; void add_special_token(const std::string &token) { special_tokens.push_back(token); } }; // sample next token given probabilities for each embedding // // - consider only the top K tokens // - from them, consider only the top tokens with cumulative probability > P // // TODO: not sure if this implementation is correct // gpt_vocab::id gpt_sample_top_k_top_p( const gpt_vocab & vocab, const size_t actualVocabSize, const int32_t * last_n_tokens_data, int last_n_tokens_size, const std::vector logits, int top_k, double top_p, double temp, float repeat_penalty, std::mt19937 & rng); enum TokenizerType { MPT, MPT_CHAT, GPTJ }; void get_bpecpp_tokenizer(const TokenizerType ttype, std::unique_ptr& bpe, std::unique_ptr& av);