#define GPTJ_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE #include "gptj_impl.h" #include "utils.h" #include "llmodel_shared.h" #include #include #include #include #include #include #include #include #include #if defined(_WIN32) && defined(_MSC_VER) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include #include #include #else #include #endif #include #include #include namespace { const char *modelType_ = "GPT-J"; } // default hparams (GPT-J 6B) struct gptj_hparams { int32_t n_vocab = 50400; int32_t n_ctx = 2048; int32_t n_embd = 4096; int32_t n_head = 16; int32_t n_layer = 28; int32_t n_rot = 64; float norm_eps = 1e-5; }; struct gptj_layer { // normalization struct ggml_tensor * ln_1_g; struct ggml_tensor * ln_1_b; // attention struct ggml_tensor * c_attn_q_proj_w; struct ggml_tensor * c_attn_k_proj_w; struct ggml_tensor * c_attn_v_proj_w; struct ggml_tensor * c_attn_proj_w; // ff struct ggml_tensor * c_mlp_fc_w; struct ggml_tensor * c_mlp_fc_b; struct ggml_tensor * c_mlp_proj_w; struct ggml_tensor * c_mlp_proj_b; }; struct gptj_model { gptj_hparams hparams; // normalization struct ggml_tensor * ln_f_g; struct ggml_tensor * ln_f_b; struct ggml_tensor * wte; // position embedding struct ggml_tensor * lmh_g; // language model head struct ggml_tensor * lmh_b; // language model bias std::vector layers; // key + value memory struct llm_kv_cache kv_self; // struct ggml_context * ctx; std::map tensors; llm_buffer eval_buf; llm_buffer scr0_buf; llm_buffer scr1_buf; ~gptj_model() { if (ctx) { ggml_free(ctx); } } }; static bool kv_cache_init( const struct gptj_hparams & hparams, struct llm_kv_cache & cache, ggml_type wtype, int n_ctx) { const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int64_t n_mem = (int64_t)n_layer*n_ctx; const int64_t n_elements = n_embd*n_mem; cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MiB); struct ggml_init_params params; params.mem_size = cache.buf.size; params.mem_buffer = cache.buf.addr; params.no_alloc = false; cache.ctx = ggml_init(params); if (!cache.ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); return false; } cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); return true; } // load the model's weights from a file path bool gptj_model_load(const std::string &fname, gptj_model & model, gpt_vocab & vocab, size_t * mem_req = nullptr) { printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); if(mem_req != nullptr) { *mem_req = 0; } // create the ggml context struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ &model.ctx, }; gguf_context *ggufctx = gguf_init_from_file(fname.c_str(), params); if (!ggufctx) { fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__); return false; } // load hparams { auto & hparams = model.hparams; bool ok = false; int keyidx; do { keyidx = gguf_find_key(ggufctx, "gptj.context_length"); if (keyidx == -1) { break; } hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "gptj.embedding_length"); if (keyidx == -1) { break; } hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "gptj.attention.head_count"); if (keyidx == -1) { break; } hparams.n_head = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "gptj.block_count"); if (keyidx == -1) { break; } hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "gptj.rope.dimension_count"); if (keyidx == -1) { break; } hparams.n_rot = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "gptj.attention.layer_norm_epsilon"); if (keyidx == -1) { break; } hparams.norm_eps = gguf_get_val_f32(ggufctx, keyidx); ok = true; } while (false); if (!ok) { fprintf(stderr, "%s: required hparam missing!\n", __func__); return false; } printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: n_rot = %d\n", __func__, hparams.n_rot); } // load vocab { auto & hparams = model.hparams; int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model"); if (keyidx == -1) { fprintf(stderr, "%s: tokenizer model not found!\n", __func__); return false; } if (strcmp(gguf_get_val_str(ggufctx, keyidx), "gpt2") != 0) { fprintf(stderr, "%s: tokenizer model not supported!\n", __func__); return false; } int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens"); if (tokens_keyidx == -1) { fprintf(stderr, "%s: gpt2 tokenizer vocab not found!\n", __func__); return false; } hparams.n_vocab = gguf_get_arr_n(ggufctx, tokens_keyidx); printf("%s: gpt2 tokenizer vocab = %d\n", __func__, int(hparams.n_vocab)); for (int i = 0; i < hparams.n_vocab; i++) { std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } auto & ctx = model.ctx; size_t ctx_size = ggml_get_mem_size(ctx); printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0)); if (mem_req != nullptr) { *mem_req = ctx_size; gguf_free(ggufctx); return false; } // prepare memory for the weights { const auto & hparams = model.hparams; model.layers.resize(hparams.n_layer); model.wte = ggml_get_tensor(ctx, "token_embd.weight"); model.ln_f_g = ggml_get_tensor(ctx, "output_norm.weight"); model.ln_f_b = ggml_get_tensor(ctx, "output_norm.bias"); model.lmh_g = ggml_get_tensor(ctx, "output.weight"); model.lmh_b = ggml_get_tensor(ctx, "output.bias"); auto name = [](int i, std::string n) { static std::string key; key = "blk." + std::to_string(i) + "." + n; return key.c_str(); }; for (int i = 0; i < hparams.n_layer; ++i) { auto & layer = model.layers[i]; layer.ln_1_g = ggml_get_tensor(ctx, name(i, "attn_norm.weight")); layer.ln_1_b = ggml_get_tensor(ctx, name(i, "attn_norm.bias")); layer.c_attn_q_proj_w = ggml_get_tensor(ctx, name(i, "attn_q.weight")); layer.c_attn_k_proj_w = ggml_get_tensor(ctx, name(i, "attn_k.weight")); layer.c_attn_v_proj_w = ggml_get_tensor(ctx, name(i, "attn_v.weight")); layer.c_attn_proj_w = ggml_get_tensor(ctx, name(i, "attn_output.weight")); layer.c_mlp_fc_w = ggml_get_tensor(ctx, name(i, "ffn_up.weight")); layer.c_mlp_fc_b = ggml_get_tensor(ctx, name(i, "ffn_up.bias")); layer.c_mlp_proj_w = ggml_get_tensor(ctx, name(i, "ffn_down.weight")); layer.c_mlp_proj_b = ggml_get_tensor(ctx, name(i, "ffn_down.bias")); } } // key + value memory { const auto & hparams = model.hparams; if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F16, model.hparams.n_ctx)) { fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); ggml_free(ctx); return false; } const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v); printf("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } model.scr0_buf.resize(256u * 1024 * 1024); model.scr1_buf.resize(256u * 1024 * 1024); return true; } // evaluate the transformer // // - model: the model // - n_threads: number of threads to use // - n_past: the context size so far // - embd_inp: the embeddings of the tokens in the context // - embd_w: the predicted logits for the next token // // The GPT-J model requires about 16MB of memory per input token. // bool gptj_eval( gptj_model & model, const int n_threads, const int n_past, const std::vector & embd_inp, std::vector & embd_w, size_t & mem_per_token) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_rot; const size_t init_buf_size = 1024_MiB; if (!model.eval_buf.addr || model.eval_buf.size < init_buf_size) model.eval_buf.resize(init_buf_size); if (mem_per_token > 0 && mem_per_token*N > model.eval_buf.size) { const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, model.eval_buf.size, buf_size_new); // reallocate model.eval_buf.resize(buf_size_new); if (model.eval_buf.addr == nullptr) { fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, model.eval_buf.size); return false; } } struct ggml_init_params params = { .mem_size = model.eval_buf.size, .mem_buffer = model.eval_buf.addr, .no_alloc = false }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph * gf = ggml_new_graph(ctx0); // KQ_pos - contains the positions struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); int * data = (int *) KQ_pos->data; for (int i = 0; i < N; ++i) { data[i] = n_past + i; } struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); // wte struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * cur; ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, }); // norm { cur = ggml_norm(ctx0, inpL, model.hparams.norm_eps); // cur = ln_1_g*cur + ln_1_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), cur), ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); } struct ggml_tensor * inpSA = cur; // self-attention { struct ggml_tensor * Qcur = ggml_rope( ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0 ); struct ggml_tensor * Kcur = ggml_rope( ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0 ); // store key and value to memory { struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_v_proj_w, cur)); struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_self.k, N*n_embd, (ggml_element_size(model.kv_self.k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_2d(ctx0, model.kv_self.v, N, n_embd, ( n_ctx)*ggml_element_size(model.kv_self.v), (il*n_ctx)*ggml_element_size(model.kv_self.v)*n_embd + n_past*ggml_element_size(model.kv_self.v)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.kv_self.k)*n_embd), n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) ); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() struct ggml_tensor * V = ggml_view_3d(ctx0, model.kv_self.v, n_past + N, n_embd/n_head, n_head, n_ctx*ggml_element_size(model.kv_self.v), n_ctx*ggml_element_size(model.kv_self.v)*n_embd/n_head, il*n_ctx*ggml_element_size(model.kv_self.v)*n_embd); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_proj_w, cur); } struct ggml_tensor * inpFF = cur; ggml_set_scratch(ctx0, {0, model.scr1_buf.size, model.scr1_buf.addr, }); // feed-forward network // this is independent of the self-attention result, so it could be done in parallel to the self-attention { // note here we pass inpSA instead of cur cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_fc_w, inpSA); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur), cur); // GELU activation cur = ggml_gelu(ctx0, cur); // projection // cur = proj_w*cur + proj_b cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_proj_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur), cur); } // self-attention + FF cur = ggml_add(ctx0, cur, inpFF); // input for next layer inpL = ggml_add(ctx0, cur, inpL); } ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, }); // norm { inpL = ggml_norm(ctx0, inpL, model.hparams.norm_eps); // inpL = ln_f_g*inpL + ln_f_b inpL = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f_g, inpL), inpL), ggml_repeat(ctx0, model.ln_f_b, inpL)); } ggml_set_scratch(ctx0, { 0, 0, nullptr, }); // lm_head { inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL); inpL = ggml_add(ctx0, ggml_repeat(ctx0, model.lmh_b, inpL), inpL); } // logits -> probs //inpL = ggml_soft_max(ctx0, inpL); ggml_build_forward_expand(gf, inpL); // run the computation { std::unique_ptr data; auto plan = ggml_graph_plan(gf, n_threads); if (plan.work_size > 0) { data.reset(new uint8_t[plan.work_size]); plan.work_data = data.get(); } ggml_graph_compute(gf, &plan); } //if (n_past%100 == 0) { // ggml_graph_print (gf); // ggml_graph_dump_dot(gf, NULL, "gpt-2.dot"); //} //embd_w.resize(n_vocab*N); //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); // return result for just the last token embd_w.resize(n_vocab); memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); ggml_free(ctx0); return true; } #define GPTJ_MAX_RNG_STATE 64*1024 size_t gptj_get_state_size(const gptj_model &model) { // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. // for reference, std::mt19937(1337) serializes to 6701 bytes. const size_t s_rng_size = sizeof(size_t); const size_t s_rng = GPTJ_MAX_RNG_STATE; const size_t s_kv_size = sizeof(size_t); const size_t s_kv_ntok = sizeof(int); const size_t s_kv = model.kv_self.buf.size; const size_t s_total = ( + s_rng_size + s_rng + s_kv_size + s_kv_ntok + s_kv ); fflush(stdout); return s_total; } size_t gptj_copy_state_data(const gptj_model &model, const std::mt19937 &rng, uint8_t *dest) { uint8_t * out = dest; fflush(stdout); // copy rng { std::stringstream rng_ss; rng_ss << rng; const size_t rng_size = rng_ss.str().size(); char rng_buf[GPTJ_MAX_RNG_STATE]; memset(&rng_buf[0], 0, GPTJ_MAX_RNG_STATE); memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size); memcpy(out, &rng_buf[0], GPTJ_MAX_RNG_STATE); out += GPTJ_MAX_RNG_STATE; } // copy kv cache { const size_t kv_size = model.kv_self.buf.size; const int kv_ntok = model.kv_self.n; memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size); memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok); if (kv_size) { memcpy(out, model.kv_self.buf.addr, kv_size); out += kv_size; } } const size_t written = out - dest; assert(written == gptj_get_state_size(model)); fflush(stdout); return written; } size_t gptj_set_state_data(gptj_model *model, std::mt19937 *rng, const uint8_t *src) { const uint8_t * in = src; // set rng { size_t rng_size; char rng_buf[GPTJ_MAX_RNG_STATE]; memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size); memcpy(&rng_buf[0], in, GPTJ_MAX_RNG_STATE); in += GPTJ_MAX_RNG_STATE; std::stringstream rng_ss; rng_ss.str(std::string(&rng_buf[0], rng_size)); rng_ss >> *rng; assert(rng_ss.fail() == false); } // set kv cache { size_t kv_size; int kv_ntok; memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size); memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok); if (kv_size) { assert(model->kv_self.buf.size == kv_size); void * k_data = model->kv_self.k->data; // remember data pointers void * v_data = model->kv_self.v->data; // because their value is stored in buf and overwritten by memcpy memcpy(model->kv_self.buf.addr, in, kv_size); in += kv_size; model->kv_self.k->data = k_data; // restore correct data pointers model->kv_self.v->data = v_data; } model->kv_self.n = kv_ntok; } const size_t nread = in - src; assert(nread == gptj_get_state_size(*model)); fflush(stdout); return nread; } struct GPTJPrivate { const std::string modelPath; bool modelLoaded; gpt_vocab vocab; gptj_model *model = nullptr; int64_t n_threads = 0; size_t mem_per_token = 0; std::mt19937 rng; }; GPTJ::GPTJ() : d_ptr(new GPTJPrivate) { d_ptr->model = new gptj_model; d_ptr->model->ctx = nullptr; d_ptr->modelLoaded = false; } size_t GPTJ::requiredMem(const std::string &modelPath) { gptj_model dummy_model; gpt_vocab dummy_vocab; size_t mem_req; gptj_model_load(modelPath, dummy_model, dummy_vocab, &mem_req); return mem_req; } bool GPTJ::loadModel(const std::string &modelPath) { std::mt19937 rng(time(NULL)); d_ptr->rng = rng; // load the model if (!gptj_model_load(modelPath, *d_ptr->model, d_ptr->vocab)) { std::cerr << "GPT-J ERROR: failed to load model from " << modelPath; return false; } d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); d_ptr->modelLoaded = true; fflush(stdout); return true; } void GPTJ::setThreadCount(int32_t n_threads) { d_ptr->n_threads = n_threads; } int32_t GPTJ::threadCount() const { return d_ptr->n_threads; } GPTJ::~GPTJ() { delete d_ptr->model; } bool GPTJ::isModelLoaded() const { return d_ptr->modelLoaded; } size_t GPTJ::stateSize() const { return gptj_get_state_size(*d_ptr->model); } size_t GPTJ::saveState(uint8_t *dest) const { return gptj_copy_state_data(*d_ptr->model, d_ptr->rng, dest); } size_t GPTJ::restoreState(const uint8_t *src) { return gptj_set_state_data(d_ptr->model, &d_ptr->rng, src); } std::vector GPTJ::tokenize(PromptContext &, const std::string &str) const { return ::gpt_tokenize(d_ptr->vocab, str); } LLModel::Token GPTJ::sampleToken(PromptContext &promptCtx) const { const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size()); return gpt_sample_top_k_top_p(d_ptr->model->hparams.n_vocab, promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks, n_prev_toks, promptCtx.logits, promptCtx.top_k, promptCtx.top_p, promptCtx.temp, promptCtx.repeat_penalty, d_ptr->rng); } std::string GPTJ::tokenToString(Token id) const { return d_ptr->vocab.id_to_token[id]; } bool GPTJ::evalTokens(PromptContext &ctx, const std::vector &tokens) const { // determine the required inference memory per token: static bool initialized = false; if (!initialized) { gptj_eval(*d_ptr->model, d_ptr->n_threads, 0, { 0, 1, 2, 3 }, ctx.logits, d_ptr->mem_per_token); initialized = true; } return gptj_eval(*d_ptr->model, d_ptr->n_threads, ctx.n_past, tokens, ctx.logits, d_ptr->mem_per_token); } int32_t GPTJ::contextLength() const { return d_ptr->model->hparams.n_ctx; } const std::vector &GPTJ::endTokens() const { static const std::vector fres = {50256}; return fres; } std::string get_arch_name(gguf_context *ctx_gguf) { std::string arch_name; const int kid = gguf_find_key(ctx_gguf, "general.architecture"); enum gguf_type ktype = gguf_get_kv_type(ctx_gguf, kid); if (ktype != GGUF_TYPE_STRING) { throw std::runtime_error("ERROR: Can't get general architecture from gguf file."); } return gguf_get_val_str(ctx_gguf, kid); } #if defined(_WIN32) #define DLL_EXPORT __declspec(dllexport) #else #define DLL_EXPORT __attribute__ ((visibility ("default"))) #endif extern "C" { DLL_EXPORT bool is_g4a_backend_model_implementation() { return true; } DLL_EXPORT const char *get_model_type() { return modelType_; } DLL_EXPORT const char *get_build_variant() { return GGML_BUILD_VARIANT; } DLL_EXPORT bool magic_match(const char * fname) { struct ggml_context * ctx_meta = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx_meta, }; gguf_context *ctx_gguf = gguf_init_from_file(fname, params); if (!ctx_gguf) return false; bool isValid = gguf_get_version(ctx_gguf) <= 3; isValid = isValid && get_arch_name(ctx_gguf) == "gptj"; gguf_free(ctx_gguf); return isValid; } DLL_EXPORT LLModel *construct() { return new GPTJ; } }