import json import torch import numpy as np from read import read_config from argparse import ArgumentParser from peft import PeftModelForCausalLM from transformers import AutoModelForCausalLM, AutoTokenizer def read_jsonl_file(file_path): data = [] with open(file_path, 'r', encoding='utf-8') as file: for line in file: json_object = json.loads(line.strip()) data.append(json_object) return data def setup_model(config): model = AutoModelForCausalLM.from_pretrained(config["model_name"], device_map="auto", torch_dtype=torch.float16, output_hidden_states=True) tokenizer = AutoTokenizer.from_pretrained(config["tokenizer_name"]) added_tokens = tokenizer.add_special_tokens({"bos_token": "", "eos_token": "", "pad_token": ""}) if added_tokens > 0: model.resize_token_embeddings(len(tokenizer)) if config["lora"]: model = PeftModelForCausalLM.from_pretrained(model, config["lora_path"], device_map="auto", torch_dtype=torch.float16, return_hidden_states=True) model.to(dtype=torch.float16) print(f"Mem needed: {model.get_memory_footprint() / 1024 / 1024 / 1024:.2f} GB") return model, tokenizer def eval_example(model, tokenizer, example, config): #set up data prompt = example['instruction'] + ' ' + example['instances'][0]['input'] gt = prompt + ' ' + example['instances'][0]['output'] #decode several continuations and compute their page trajectories input = tokenizer(prompt, return_tensors="pt") input = {k: v.to(model.device) for k, v in input.items()} continuations = [] trajectories = [] for i in range(5): print(i) outputs = model.generate(input_ids=input['input_ids'], max_new_tokens=config["max_new_tokens"], temperature=config["temperature"]) y = model(input_ids=outputs) trajectory = y.hidden_states[0].detach().cpu().numpy()[0] trajectory = trajectory / np.linalg.norm(trajectory, axis=1, keepdims=True) trajectory = np.cumsum(trajectory, axis=0) / np.arange(1, trajectory.shape[0]+1).reshape(-1, 1) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True).strip() trajectories.append(trajectory) continuations.append(decoded[len(prompt):]) #compute the ground truth perplexity nlls = [] prev_end_loc = 0 for begin_loc in tqdm(range(len(prompt), len(gt), 1)): end_loc = min(begin_loc + max_length, seq_len) trg_len = end_loc - prev_end_loc # may be different from stride on last loop input_ids = input['input_ids'][:, begin_loc:end_loc].to(model.device) target_ids = input_ids.clone() target_ids[:, :-trg_len] = -100 with torch.no_grad(): outputs = model(input_ids, labels=target_ids) neg_log_likelihood = outputs.loss * trg_len nlls.append(neg_log_likelihood) prev_end_loc = end_loc if end_loc == seq_len: break ppl = torch.exp(torch.stack(nlls).sum() / end_loc) print('perplexity: ', ppl) print('trajectories: ', trajectories) print('continuations: ', continuations) raise return ppl, trajectories, continuations def do_eval(config): eval_data = read_jsonl_file('eval_data/user_oriented_instructions.jsonl') model, tokenizer = setup_model(config) trajectories = [] perplexities = [] continuations = [] for example in eval_data: gt_perplexity, trajectories, continuations = eval_example(model, tokenizer, example, config) if __name__ == '__main__': parser = ArgumentParser() parser.add_argument("--config", type=str, required=True) args = parser.parse_args() config = read_config(args.config) do_eval(config)