import glob import torch from datasets import load_dataset, concatenate_datasets import os from torch.utils.data import DataLoader from transformers import DefaultDataCollator def tokenize_inputs(config, tokenizer, examples): max_length = config["max_length"] input_ids = torch.full((len(examples["prompt"]), max_length), tokenizer.pad_token_id) # ignore bos newline_tokens = tokenizer("\n", return_tensors="pt")["input_ids"][0, 1:] out = {"labels": [], "attention_mask": []} for i, (prompt, response) in enumerate(zip(examples["prompt"], examples["response"])): input_tokens = tokenizer(prompt, truncation=True, max_length=max_length // 2, return_tensors="pt")["input_ids"].squeeze() input_len = len(input_tokens) # plus one since we remove bos from response # but we subtract one since we want to add eos token remaining_tokens = max_length - input_len - len(newline_tokens) + 1 # remove bos target_tokens = tokenizer(response, truncation=True, max_length=remaining_tokens, return_tensors="pt")["input_ids"].squeeze()[1:] input_ids[i, :input_len] = input_tokens # add newline between prompt and response newline_plus_inputs = input_len + len(newline_tokens) input_ids[i, input_len: newline_plus_inputs] = newline_tokens # add target tokens, remove bos input_ids[i, newline_plus_inputs: newline_plus_inputs + len(target_tokens)] = target_tokens # add eos token, enforce stopping if we don't truncate # we don't want long code to stop generating if truncated during training if newline_plus_inputs + len(target_tokens) < max_length: input_ids[i, newline_plus_inputs + len(target_tokens)] = tokenizer.eos_token_id labels = input_ids[i].clone() labels[: newline_plus_inputs] = -100 labels[labels == tokenizer.pad_token_id] = -100 # to debug this, can set all values == -100 to the pad token, then assert that tokenizer.decode(labels, skip_special_tokens=True).strip() == response attention_mask = input_ids[i].ne(tokenizer.pad_token_id).int() out["labels"].append(labels) out["attention_mask"].append(attention_mask) out["input_ids"] = input_ids out = {k: torch.stack(v) if isinstance(v, list) else v for k, v in out.items()} return out def load_data(config, tokenizer): dataset_path = config["dataset_path"] if os.path.exists(dataset_path): if os.path.isdir(dataset_path): files = glob.glob(os.path.join(dataset_path, "*_clean.jsonl")) else: files = [dataset_path] print(f"Reading files {files}") dataset = load_dataset("json", data_files=files, split="train") else: dataset = load_dataset(dataset_path, split='train') dataset = dataset.train_test_split(test_size=.05, seed=config["seed"]) train_dataset, val_dataset = dataset["train"], dataset["test"] if config["streaming"] is False: kwargs = {"num_proc": config["num_proc"]} else: kwargs = {} # tokenize inputs and return labels and attention mask train_dataset = train_dataset.map( lambda ele: tokenize_inputs(config, tokenizer, ele), batched=True, remove_columns=["source", "prompt"], **kwargs ) val_dataset = val_dataset.map( lambda ele: tokenize_inputs(config, tokenizer, ele), batched=True, remove_columns=["source", "prompt"], **kwargs ) train_dataset = train_dataset.with_format("torch") val_dataset = val_dataset.with_format("torch") # create dataloader with default data collator since we already have labels train_dataloader = DataLoader( train_dataset, collate_fn=DefaultDataCollator(), batch_size=config["batch_size"], ) val_dataloader = DataLoader( val_dataset, collate_fn=DefaultDataCollator(), batch_size=config["batch_size"], ) return train_dataloader, val_dataloader