import os from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.trainer_pt_utils import get_parameter_names import torch import torch.nn as nn from argparse import ArgumentParser from read import read_config from accelerate import Accelerator from accelerate.utils import DummyScheduler, DummyOptim, set_seed from peft import get_peft_model, LoraConfig, TaskType from data import load_data from torchmetrics import MeanMetric from tqdm import tqdm def format_metrics(metrics, split, prefix=""): log = f"[{split}]" + prefix log += " ".join([f"{key}: {value:.4f}" for key, value in metrics.items()]) return log def evaluate(config, model, val_dataloader): model.eval() val_loss = MeanMetric().to(model.device) with torch.no_grad(): for i, batch in enumerate( tqdm(val_dataloader), ): if i == config["eval_steps"]: break loss = model(**batch).loss loss_values = accelerator.gather_for_metrics({"loss": loss.detach()}) val_loss.update(loss_values["loss"]) return val_loss def train(accelerator, config): set_seed(config['seed']) accelerator.print(config) accelerator.print(f"Using {accelerator.num_processes} GPUs") tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name']) # llama has no pad token, set it to new token if tokenizer.pad_token is None: # these tokens are already in the vocab, just not mapped correctly added_tokens = tokenizer.add_special_tokens({"bos_token": "", "eos_token": "", "pad_token": ""}) with accelerator.main_process_first(): train_dataloader, val_dataloader = load_data(config, tokenizer) checkpoint = config["gradient_checkpointing"] model = AutoModelForCausalLM.from_pretrained(config["model_name"], use_cache=False if checkpoint else True, trust_remote_code=True) if added_tokens > 0: model.resize_token_embeddings(len(tokenizer)) if checkpoint: model.gradient_checkpointing_enable() if config["lora"]: peft_config = LoraConfig( # should R be configurable? task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) model = get_peft_model(model, peft_config) model.print_trainable_parameters() optimizer_cls = ( torch.optim.AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) # karpathy doesn't decay embeddding, maybe we should exclude # https://github.com/karpathy/minGPT/commit/bbbdac74fa9b2e55574d70056163ffbae42310c1#diff-2075fa9c224b395be5bda85544dd36572b59c76c54562819eadadbf268602834R157s optimizer = optimizer_cls(model.parameters(), lr=config["lr"]) # scheduler defined in Deepspeed config scheduler = DummyScheduler( optimizer, warmup_num_steps=config["warmup_steps"], ) model, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare( model, optimizer, train_dataloader, val_dataloader, scheduler ) # setup for saving training states in case preemption accelerator.register_for_checkpointing(scheduler) if config["checkpoint"]: accelerator.load_state(config["checkpoint"]) accelerator.print(f"Resumed from checkpoint: {config['checkpoint']}") path = os.path.basename(config["train_args"]["resume_from_checkpoint"]) training_difference = os.path.splitext(path)[0] resume_step = int(training_difference.replace("step_", "")) accelerator.skip_first_batches(train_dataloader, resume_step) accelerator.print(f"Resuming from step {resume_step}") train_loss = MeanMetric().to(model.device) if accelerator.state.deepspeed_plugin is not None: gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] for epoch in range(config["num_epochs"]): for step, batch in enumerate(tqdm(train_dataloader)): model.train() outputs = model(**batch) loss = outputs.loss loss = loss / gradient_accumulation_steps accelerator.backward(loss) # log LR in case something weird happens if step > 0 and step % (config["eval_every"] // 10) == 0: if config["wandb"]: curr_step = step + epoch * len(train_dataloader) accelerator.log({"lr": scheduler.get_last_lr()[0]}, step=curr_step) if (step + 1) % gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() scheduler.step() optimizer.zero_grad() loss_values = accelerator.gather_for_metrics({"loss": loss.detach()}) train_loss.update(loss_values["loss"]) if step > 0 and step % config["save_every"] == 0: accelerator.save_state(f"{config['output_dir']}/step_{step}") if step > 0 and step % config["eval_every"] == 0: val_loss = evaluate(config, model, val_dataloader) log_train = { "train_loss": train_loss.compute() } log_val = { "val_loss": val_loss.compute() } if config["wandb"]: curr_step = step + epoch * len(train_dataloader) accelerator.log({**log_train, **log_val}, step=curr_step) accelerator.print(f"Current LR: {scheduler.get_last_lr()[0]}") accelerator.print(format_metrics(log_train, "train", f" step {step} ")) accelerator.print(format_metrics(log_val, "val", f" step {step} ")) train_loss.reset() accelerator.print(f"Epoch {epoch} finished") accelerator.print(f"Pushing to HF hub") accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) if accelerator.is_main_process: unwrapped_model.push_to_hub(config["save_name"] + "_first_epoch", private=True) accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( f"{config['output_dir']}/final", is_main_process=accelerator.is_main_process, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model), ) if accelerator.is_main_process: unwrapped_model.push_to_hub(config["save_name"], private=True) accelerator.end_training() if __name__ == "__main__": # parse arguments by reading in a config parser = ArgumentParser() parser.add_argument("--config", type=str, default="config.yaml") args = parser.parse_args() config = read_config(args.config) if config["wandb"]: accelerator = Accelerator(log_with="wandb") accelerator.init_trackers( project_name=config["wandb_project_name"], config=config, init_kwargs={"wandb": {"entity": config["wandb_entity"]}}, ) else: accelerator = Accelerator() train(accelerator, config=config)