#include "gptj.h" #include "ggml/ggml.h" #include "utils.h" #include #include #include #include #include #include #include #include #include #include // default hparams (GPT-J 6B) struct gptj_hparams { int32_t n_vocab = 50400; int32_t n_ctx = 2048; int32_t n_embd = 4096; int32_t n_head = 16; int32_t n_layer = 28; int32_t n_rot = 64; int32_t f16 = 1; }; struct gptj_layer { // normalization struct ggml_tensor * ln_1_g; struct ggml_tensor * ln_1_b; // attention struct ggml_tensor * c_attn_q_proj_w; struct ggml_tensor * c_attn_k_proj_w; struct ggml_tensor * c_attn_v_proj_w; struct ggml_tensor * c_attn_proj_w; // ff struct ggml_tensor * c_mlp_fc_w; struct ggml_tensor * c_mlp_fc_b; struct ggml_tensor * c_mlp_proj_w; struct ggml_tensor * c_mlp_proj_b; }; struct gptj_model { gptj_hparams hparams; // normalization struct ggml_tensor * ln_f_g; struct ggml_tensor * ln_f_b; struct ggml_tensor * wte; // position embedding struct ggml_tensor * lmh_g; // language model head struct ggml_tensor * lmh_b; // language model bias std::vector layers; // key + value memory struct ggml_tensor * memory_k; struct ggml_tensor * memory_v; // struct ggml_context * ctx; std::map tensors; }; // load the model's weights from a stream bool gptj_model_load(const std::string &fname, std::istream &fin, gptj_model & model, gpt_vocab & vocab) { printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); // verify magic { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != 0x67676d6c) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return false; } } // load hparams { auto & hparams = model.hparams; fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot)); fin.read((char *) &hparams.f16, sizeof(hparams.f16)); printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: n_rot = %d\n", __func__, hparams.n_rot); printf("%s: f16 = %d\n", __func__, hparams.f16); } // load vocab { int32_t n_vocab = 0; fin.read((char *) &n_vocab, sizeof(n_vocab)); if (n_vocab != model.hparams.n_vocab) { fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); return false; } std::string word; for (int i = 0; i < n_vocab; i++) { uint32_t len; fin.read((char *) &len, sizeof(len)); word.resize(len); fin.read((char *) word.data(), len); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } // for the big tensors, we have the option to store the data in 16-bit floats or quantized // in order to save memory and also to speed up the computation ggml_type wtype = GGML_TYPE_COUNT; switch (model.hparams.f16) { case 0: wtype = GGML_TYPE_F32; break; case 1: wtype = GGML_TYPE_F16; break; case 2: wtype = GGML_TYPE_Q4_0; break; case 3: wtype = GGML_TYPE_Q4_1; break; default: { fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n", __func__, fname.c_str(), model.hparams.f16); return false; } } const ggml_type wtype2 = GGML_TYPE_F32; auto & ctx = model.ctx; size_t ctx_size = 0; { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // wte ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // lmh_g ctx_size += n_vocab*ggml_type_sizef(GGML_TYPE_F32); // lmh_b ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_q_proj_w ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_k_proj_w ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_v_proj_w ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v ctx_size += (5 + 10*n_layer)*256; // object overhead printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); } // create the ggml context { struct ggml_init_params params = { .mem_size = ctx_size, .mem_buffer = NULL, }; model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // prepare memory for the weights { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; model.layers.resize(n_layer); model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab); // map by name model.tensors["transformer.wte.weight"] = model.wte; model.tensors["transformer.ln_f.weight"] = model.ln_f_g; model.tensors["transformer.ln_f.bias"] = model.ln_f_b; model.tensors["lm_head.weight"] = model.lmh_g; model.tensors["lm_head.bias"] = model.lmh_b; for (int i = 0; i < n_layer; ++i) { auto & layer = model.layers[i]; layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.c_attn_q_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_k_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_v_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd); layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // map by name model.tensors["transformer.h." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_g; model.tensors["transformer.h." + std::to_string(i) + ".ln_1.bias"] = layer.ln_1_b; model.tensors["transformer.h." + std::to_string(i) + ".attn.q_proj.weight"] = layer.c_attn_q_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".attn.k_proj.weight"] = layer.c_attn_k_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".attn.v_proj.weight"] = layer.c_attn_v_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.weight"] = layer.c_mlp_fc_w; model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.bias"] = layer.c_mlp_fc_b; model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.weight"] = layer.c_mlp_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.bias"] = layer.c_mlp_proj_b; } } // key + value memory { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_mem = n_layer*n_ctx; const int n_elements = n_embd*n_mem; model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); printf("%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem); } // load weights { int n_tensors = 0; size_t total_size = 0; printf("%s: ", __func__); while (true) { int32_t n_dims; int32_t length; int32_t ftype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ftype), sizeof(ftype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); if (model.tensors.find(name.data()) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); return false; } auto tensor = model.tensors[name.data()]; if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n", __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]); return false; } if (0) { static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", }; printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ftype_str[ftype], ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor)); } size_t bpe = 0; switch (ftype) { case 0: bpe = ggml_type_size(GGML_TYPE_F32); break; case 1: bpe = ggml_type_size(GGML_TYPE_F16); break; case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break; case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break; default: { fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype); return false; } }; if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); return false; } fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); //printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); total_size += ggml_nbytes(tensor); if (++n_tensors % 8 == 0) { printf("."); fflush(stdout); } } printf(" done\n"); printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors); } return true; } // load the model's weights from a file path bool gptj_model_load(const std::string & fname, gptj_model & model, gpt_vocab & vocab) { auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return false; } bool loaded = gptj_model_load(fname, fin, model, vocab); fin.close(); return loaded; } // evaluate the transformer // // - model: the model // - n_threads: number of threads to use // - n_past: the context size so far // - embd_inp: the embeddings of the tokens in the context // - embd_w: the predicted logits for the next token // // The GPT-J model requires about 16MB of memory per input token. // bool gptj_eval( const gptj_model & model, const int n_threads, const int n_past, const std::vector & embd_inp, std::vector & embd_w, size_t & mem_per_token) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_rot; const int d_key = n_embd/n_head; static size_t buf_size = 256u*1024*1024; static void * buf = malloc(buf_size); if (mem_per_token > 0 && mem_per_token*N > buf_size) { const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); // reallocate buf_size = buf_size_new; buf = realloc(buf, buf_size); if (buf == nullptr) { fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); return false; } } struct ggml_init_params params = { .mem_size = buf_size, .mem_buffer = buf, }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = { .n_threads = n_threads }; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); // wte struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * cur; // norm { cur = ggml_norm(ctx0, inpL); // cur = ln_1_g*cur + ln_1_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), cur), ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); } struct ggml_tensor * inpSA = cur; // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur); struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur); struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].c_attn_v_proj_w, cur); // store key and value to memory if (N >= 1) { struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) struct ggml_tensor * Q = ggml_permute(ctx0, ggml_rope(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)), n_past, n_rot, 0), 0, 2, 1, 3); // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) struct ggml_tensor * K = ggml_permute(ctx0, ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd), n_embd/n_head, n_head, n_past + N), n_past, n_rot, 1), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) ); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() struct ggml_tensor * V_trans = ggml_cpy(ctx0, ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd), n_embd/n_head, n_head, n_past + N), 1, 2, 0, 3), ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head)); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_proj_w, cur); } struct ggml_tensor * inpFF = cur; // feed-forward network // this is independent of the self-attention result, so it could be done in parallel to the self-attention { // note here we pass inpSA instead of cur cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_fc_w, inpSA); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur), cur); // GELU activation cur = ggml_gelu(ctx0, cur); // projection // cur = proj_w*cur + proj_b cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_proj_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur), cur); } // self-attention + FF cur = ggml_add(ctx0, cur, inpFF); // input for next layer inpL = ggml_add(ctx0, cur, inpL); } // norm { inpL = ggml_norm(ctx0, inpL); // inpL = ln_f_g*inpL + ln_f_b inpL = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f_g, inpL), inpL), ggml_repeat(ctx0, model.ln_f_b, inpL)); } // lm_head { inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL); inpL = ggml_add(ctx0, ggml_repeat(ctx0, model.lmh_b, inpL), inpL); } // logits -> probs //inpL = ggml_soft_max(ctx0, inpL); // run the computation ggml_build_forward_expand(&gf, inpL); ggml_graph_compute (ctx0, &gf); //if (n_past%100 == 0) { // ggml_graph_print (&gf); // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); //} //embd_w.resize(n_vocab*N); //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); // return result for just the last token embd_w.resize(n_vocab); memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); ggml_free(ctx0); return true; } struct GPTJPrivate { const std::string modelPath; bool modelLoaded; gpt_vocab vocab; gptj_model model; int64_t t_main_start_us = 0; int64_t t_load_us = 0; int64_t n_threads = 0; std::mt19937 rng; }; GPTJ::GPTJ() : d_ptr(new GPTJPrivate) { d_ptr->modelLoaded = false; } bool GPTJ::loadModel(const std::string &modelPath, std::istream &fin) { d_ptr->t_main_start_us = ggml_time_us(); std::mt19937 rng(time(NULL)); d_ptr->rng = rng; // load the model { const int64_t t_start_us = ggml_time_us(); if (!gptj_model_load(modelPath, fin, d_ptr->model, d_ptr->vocab)) { std::cerr << "GPT-J ERROR: failed to load model from" << modelPath; return false; } d_ptr->t_load_us = ggml_time_us() - t_start_us; } d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); d_ptr->modelLoaded = true; return true; } GPTJ::~GPTJ() { ggml_free(d_ptr->model.ctx); } bool GPTJ::isModelLoaded() const { return d_ptr->modelLoaded; } void GPTJ::prompt(const std::string &prompt, std::function response, int32_t n_predict, int32_t top_k, float top_p, float temp, int32_t n_batch) { if (!isModelLoaded()) { std::cerr << "GPT-J ERROR: prompt won't work with an unloaded model!\n"; return; } int n_past = 0; int64_t t_sample_us = 0; int64_t t_predict_us = 0; std::vector logits; // tokenize the prompt std::vector embd_inp = ::gpt_tokenize(d_ptr->vocab, prompt); n_predict = std::min(n_predict, d_ptr->model.hparams.n_ctx - (int) embd_inp.size()); std::vector embd; std::vector resp; // determine the required inference memory per token: size_t mem_per_token = 0; gptj_eval(d_ptr->model, d_ptr->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); for (int i = embd.size(); i < embd_inp.size() + n_predict; i++) { // predict if (embd.size() > 0) { const int64_t t_start_us = ggml_time_us(); if (!gptj_eval(d_ptr->model, d_ptr->n_threads, n_past, embd, logits, mem_per_token)) { std::cerr << "GPT-J ERROR: Failed to predict\n"; return; } t_predict_us += ggml_time_us() - t_start_us; } n_past += embd.size(); embd.clear(); resp.clear(); if (i >= embd_inp.size()) { // sample next token const int n_vocab = d_ptr->model.hparams.n_vocab; gpt_vocab::id id = 0; { const int64_t t_start_sample_us = ggml_time_us(); id = gpt_sample_top_k_top_p(d_ptr->vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, d_ptr->rng); t_sample_us += ggml_time_us() - t_start_sample_us; } // add it to the context embd.push_back(id); if (id != 50256) resp.push_back(id); } else { // if here, it means we are still processing the input prompt for (int k = i; k < embd_inp.size(); k++) { embd.push_back(embd_inp[k]); if (embd.size() > n_batch) { break; } } i += embd.size() - 1; } // display text for (auto id : resp) { if (!response(d_ptr->vocab.id_to_token[id])) goto stop_generating; } // end of text token if (embd.back() == 50256) { break; } } stop_generating: #if 0 // report timing { const int64_t t_main_end_us = ggml_time_us(); std::cout << "GPT-J INFO: mem per token = " << mem_per_token << " bytes\n"; std::cout << "GPT-J INFO: load time = " << d_ptr->t_load_us/1000.0f << " ms\n"; std::cout << "GPT-J INFO: sample time = " << t_sample_us/1000.0f << " ms\n"; std::cout << "GPT-J INFO: predict time = " << t_predict_us/1000.0f << " ms / " << t_predict_us/1000.0f/n_past << " ms per token\n"; std::cout << "GPT-J INFO: total time = " << (t_main_end_us - d_ptr->t_main_start_us)/1000.0f << " ms\n"; fflush(stdout); fflush(stderr); } #endif return; }