#define FALCON_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE #include "falcon_impl.h" #include "llama.h" #include "llama-util.h" #include "utils.h" #include "llmodel_shared.h" #include #include #include #include namespace { const char *modelType_ = "Falcon"; } // commented out 40B support as it presently would require forking ggml/llama.cpp // can re-add once mainline ggml supports it #define FALCON_MAGIC 0x67676a74 // default hparams (Falcon 7B) struct falcon_hparams { int32_t n_vocab = 65024; int32_t n_embd = 4544; int32_t n_head = 71; int32_t n_head_kv = 1; int32_t n_layer = 32; int32_t falcon_version = 7; // 7 for Falcon-7B, 40 for Falcon-40B int32_t ftype = 1; int32_t n_ctx = 2048; }; struct falcon_layer { // normalization struct ggml_tensor* input_layernorm; struct ggml_tensor* input_layernorm_b; //struct ggml_tensor* attention_norm; // Falcon-40B only //struct ggml_tensor* attention_norm_b; // Falcon-40B only // attention struct ggml_tensor* query_key_value; struct ggml_tensor* wo; // ff struct ggml_tensor* ffn_up; struct ggml_tensor* ffn_down; }; struct falcon_model { falcon_hparams hparams; struct ggml_tensor* tok_embeddings; struct ggml_tensor* output_norm; struct ggml_tensor* output_norm_b; struct ggml_tensor* lm_head; std::vector layers; // key + value memory llm_kv_cache kv_self; struct ggml_context* ctx; std::map tensors; llm_buffer eval_buf; llm_buffer scr0_buf; llm_buffer scr1_buf; }; static bool kv_cache_init( const struct falcon_hparams & hparams, struct llm_kv_cache & cache, ggml_type wtype, int n_ctx) { const int n_embd = hparams.n_embd; const int dim_head = n_embd / hparams.n_head; const int dim_kv = dim_head * hparams.n_head_kv; const int n_layer = hparams.n_layer; const int64_t n_mem = (int64_t)n_layer*n_ctx; const int64_t n_elements = dim_kv * n_mem; cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MiB); struct ggml_init_params params; params.mem_size = cache.buf.size; params.mem_buffer = cache.buf.addr; params.no_alloc = false; cache.ctx = ggml_init(params); if (!cache.ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); return false; } cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); return true; } // load the model's weights from a file bool falcon_model_load(const std::string & fname, falcon_model & model, gpt_vocab & vocab, size_t *mem_req) { printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); if (mem_req) { *mem_req = 0; } auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return false; } // verify magic { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != FALCON_MAGIC) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return false; } } uint32_t format_version; fin.read((char *) &format_version, sizeof(format_version)); // load hparams { auto & hparams = model.hparams; fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); fin.read((char *) &hparams.n_head_kv, sizeof(hparams.n_head_kv)); fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); fin.read((char *) &hparams.falcon_version, sizeof(hparams.falcon_version)); fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); if (hparams.falcon_version != 7) { // && hparams.falcon_version != 40) { fprintf(stderr, "%s: invalid model file '%s' (bad Falcon version: %d)\n", __func__, fname.c_str(), hparams.falcon_version); return false; } const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_head_kv = %d\n", __func__, hparams.n_head_kv); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: ftype = %d\n", __func__, hparams.ftype); printf("%s: qntvr = %d\n", __func__, qntvr); hparams.ftype %= GGML_QNT_VERSION_FACTOR; } // load vocab { const int32_t n_vocab = model.hparams.n_vocab; std::string word; std::vector buf(128); for (int i = 0; i < n_vocab; i++) { uint32_t len; fin.read((char *) &len, sizeof(len)); buf.resize(len); fin.read((char *) buf.data(), len); word.assign(buf.data(), len); uint32_t dummy; fin.read((char *) &dummy, sizeof(dummy)); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } // for the big tensors, we have the option to store the data in 16-bit floats or quantized // in order to save memory and also to speed up the computation ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype)); if (wtype == GGML_TYPE_COUNT) { fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(), model.hparams.ftype); return false; } auto & ctx = model.ctx; size_t ctx_size = 0; { const auto& hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_head = hparams.n_head; const int n_head_kv = hparams.n_head_kv; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_ff = 4 * model.hparams.n_embd; const int n_vocab = hparams.n_vocab; const int head_dim = hparams.n_embd / hparams.n_head; ctx_size += ggml_tensor_overhead() + ggml_type_sizef(wtype) * n_embd * n_vocab; // tok_embeddings ctx_size += ggml_tensor_overhead() + ggml_type_sizef(GGML_TYPE_F32) * n_embd; // output_norm ctx_size += ggml_tensor_overhead() + ggml_type_sizef(GGML_TYPE_F32) * n_embd; // output_norm_b ctx_size += ggml_tensor_overhead() + ggml_type_sizef(wtype) * n_embd * n_vocab; // lm_head // if (hparams.version == 40) { // Falcon-40B // ctx_size += n_layer * ggml_sizeof_tensor_1d(GGML_TYPE_F32, n_embd); // attention_norm // ctx_size += n_layer * ggml_sizeof_tensor_1d(GGML_TYPE_F32, n_embd); // attention_norm_b // } ctx_size += n_layer * (ggml_tensor_overhead() + ggml_type_sizef(GGML_TYPE_F32) * n_embd); // input_layernorm ctx_size += n_layer * (ggml_tensor_overhead() + ggml_type_sizef(GGML_TYPE_F32) * n_embd); // input_layernorm_b ctx_size += n_layer * (ggml_tensor_overhead() + ggml_type_sizef(wtype) * n_embd * (n_head_kv * 2 + n_head) * head_dim); // query_key_value ctx_size += n_layer * (ggml_tensor_overhead() + ggml_type_sizef(wtype) * n_embd * n_embd); // wo ctx_size += n_layer * (ggml_tensor_overhead() + ggml_type_sizef(wtype) * n_embd * n_ff); // ffn_up ctx_size += n_layer * (ggml_tensor_overhead() + ggml_type_sizef(wtype) * n_ff * n_embd); // ffn_down printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); } if (mem_req) { const int n_embd = model.hparams.n_embd; const int dim_head = n_embd / model.hparams.n_head; const int dim_kv = dim_head * model.hparams.n_head_kv; const int n_layer = model.hparams.n_layer; const int64_t n_mem = (int64_t)n_layer*model.hparams.n_ctx; const int64_t n_elements = dim_kv * n_mem; size_t kv_cache_size = 2u*n_elements*ggml_type_size(wtype) + 2_MiB; *mem_req = ctx_size + kv_cache_size; return false; } // create the ggml context { struct ggml_init_params params = { .mem_size = ctx_size, .mem_buffer = NULL, .no_alloc = false, }; model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // prepare memory for the weights { const auto& hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_head = hparams.n_head; const int n_head_kv = hparams.n_head_kv; const int n_layer = hparams.n_layer; const int n_ff = 4 * model.hparams.n_embd; const int n_vocab = hparams.n_vocab; const int head_dim = hparams.n_embd / hparams.n_head; model.layers.resize(n_layer); model.tok_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); // map by name model.tensors["transformer.word_embeddings.weight"] = model.tok_embeddings; model.tensors["transformer.ln_f.weight"] = model.output_norm; model.tensors["transformer.ln_f.bias"] = model.output_norm_b; model.tensors["lm_head.weight"] = model.lm_head; for (int i = 0; i < n_layer; ++i) { auto& layer = model.layers[i]; layer.input_layernorm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.input_layernorm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // if (hparams.version == 40) { // for Falcon-40B only // layer.attention_norm = // ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // layer.attention_norm_b = // ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // } // query_key_value shape for config.multi_query == True: layer.query_key_value = ggml_new_tensor_2d( ctx, wtype, n_embd, (n_head_kv * 2 + n_head) * head_dim); layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.ffn_up = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff); layer.ffn_down = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd); // map by name // if (hparams.version == 40) { // // Falcon-40B: // model.tensors["transformer.h." + std::to_string(i) + // ".ln_mlp.weight"] = layer.input_layernorm; // model.tensors["transformer.h." + std::to_string(i) + // ".ln_mlp.bias"] = layer.input_layernorm_b; // model.tensors["transformer.h." + std::to_string(i) + // ".ln_attn.weight"] = layer.attention_norm; // model.tensors["transformer.h." + std::to_string(i) + // ".ln_attn.bias"] = layer.attention_norm_b; // } else { // Falcon-7B: model.tensors["transformer.h." + std::to_string(i) + ".input_layernorm.weight"] = layer.input_layernorm; model.tensors["transformer.h." + std::to_string(i) + ".input_layernorm.bias"] = layer.input_layernorm_b; //} model.tensors["transformer.h." + std::to_string(i) + ".self_attention.query_key_value.weight"] = layer.query_key_value; model.tensors["transformer.h." + std::to_string(i) + ".self_attention.dense.weight"] = layer.wo; model.tensors["transformer.h." + std::to_string(i) + ".mlp.dense_h_to_4h.weight"] = layer.ffn_up; model.tensors["transformer.h." + std::to_string(i) + ".mlp.dense_4h_to_h.weight"] = layer.ffn_down; } } // key + value memory { const auto & hparams = model.hparams; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head_kv = hparams.n_head_kv; const int head_dim = hparams.n_embd / hparams.n_head; const int64_t n_mem = n_layer*n_ctx; const int64_t n_elements = head_dim*n_mem; if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F32, model.hparams.n_ctx)) { fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); ggml_free(ctx); return false; } const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v); printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem); } // load weights { int n_tensors = 0; size_t total_size = 0; printf("%s: ", __func__); while (true) { int32_t n_dims; int32_t length; int32_t ttype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ttype), sizeof(ttype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); fin.seekg(-static_cast(fin.tellg()) & 31, std::ios_base::cur); if (model.tensors.find(name.data()) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); return false; } auto tensor = model.tensors[name.data()]; if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%5d, %5d], expected [%5d, %5d]\n", __func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]); return false; } // for debugging if (0) { printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor)); } const size_t bpe = ggml_type_size(ggml_type(ttype)); if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); return false; } fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); total_size += ggml_nbytes(tensor); if (++n_tensors % 8 == 0) { printf("."); fflush(stdout); } } printf(" done\n"); printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors); } fin.close(); model.eval_buf.resize(256u * 1024 * 1024); model.scr0_buf.resize(256u * 1024 * 1024); model.scr1_buf.resize(256u * 1024 * 1024); return true; } // evaluate the transformer // // - model: the model // - n_threads: number of threads to use // - n_past: the context size so far // - embd_inp: the embeddings of the tokens in the context // - embd_w: the predicted logits for the next token // bool falcon_eval( const falcon_model & model, const int n_threads, const int n_past, const std::vector & embd_inp, std::vector & embd_w, size_t & mem_per_token) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_head_kv = hparams.n_head_kv; const int n_vocab = hparams.n_vocab; const int version = hparams.falcon_version; const size_t head_dim = n_embd / n_head; struct ggml_init_params eval_ctx_params = { .mem_size = model.eval_buf.size, .mem_buffer = model.eval_buf.addr, .no_alloc = false, }; struct ggml_context * ctx0 = ggml_init(eval_ctx_params); struct ggml_cgraph gf = {}; gf.n_threads = n_threads; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); // wte struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd); struct ggml_tensor* repeat_dummy = ggml_new_tensor_3d(ctx0, inpL->type, head_dim, N + n_past, n_head); ggml_type wtype = GGML_TYPE_F32; const int sizeof_wtype = ggml_type_sizef(wtype); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * cur; struct ggml_tensor * layernorm_output; ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, }); // self-attention { layernorm_output = ggml_norm(ctx0, inpL); layernorm_output = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].input_layernorm, layernorm_output), layernorm_output), ggml_repeat(ctx0, model.layers[il].input_layernorm_b, layernorm_output)); // if (version == 40) { // Falcon-40B only // cur = ggml_norm(ctx0, inpL); // cur = ggml_add(ctx0, // ggml_mul(ctx0, // ggml_repeat(ctx0, model.layers[il].attention_norm, cur), // cur), // ggml_repeat(ctx0, model.layers[il].attention_norm_b, cur)); // } // else { cur = layernorm_output; // } // compute QKV cur = ggml_mul_mat(ctx0, model.layers[il].query_key_value, cur); // Note that the strides for Kcur, Vcur are set up so that the // resulting views are misaligned with the tensor's storage // (by applying the K/V offset we shift the tensor's original // view to stick out behind the viewed QKV tensor's allocated // memory, so to say). This is ok because no actual accesses // happen to that out-of-range memory, but it can require some // trickery when trying to accurately dump these views for // debugging. struct ggml_tensor * Qcur = ggml_view_3d( ctx0, cur, head_dim, n_head, N, head_dim * sizeof_wtype, head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype, 0); struct ggml_tensor * Kcur = ggml_view_3d( ctx0, cur, head_dim, n_head_kv, N, head_dim * sizeof_wtype, head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype, head_dim * n_head * sizeof_wtype); struct ggml_tensor * Vcur = ggml_view_3d( ctx0, cur, head_dim, n_head_kv, N, head_dim * sizeof_wtype, head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype, head_dim * (n_head + n_head_kv) * sizeof_wtype); // using mode = 2 for neox mode Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, head_dim, 2); Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, head_dim, 2); // store key and value to memory { struct ggml_tensor* k = ggml_view_1d( ctx0, model.kv_self.k, N * n_head_kv * head_dim, (ggml_element_size(model.kv_self.k) * n_head_kv * head_dim) * (il * n_ctx + n_past)); struct ggml_tensor* v = ggml_view_1d( ctx0, model.kv_self.v, N * n_head_kv * head_dim, (ggml_element_size(model.kv_self.v) * n_head_kv * head_dim) * (il * n_ctx + n_past)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * K = ggml_permute( ctx0, ggml_view_3d( ctx0, model.kv_self.k, head_dim, n_head_kv, n_past + N, head_dim * sizeof_wtype, head_dim * n_head_kv * sizeof_wtype, il * n_ctx * ggml_element_size(model.kv_self.k) * n_head_kv * head_dim), 0, 2, 1, 3); // K * Q // changed from repeat2 back to repeat, will not support 40B! K = ggml_cont(ctx0, ggml_repeat(ctx0, K, repeat_dummy)); struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrt(float(head_dim))) ); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() struct ggml_tensor* V = ggml_permute( ctx0, ggml_view_3d( ctx0, model.kv_self.v, head_dim, n_head_kv, n_past + N, head_dim * sizeof_wtype, head_dim * n_head_kv * sizeof_wtype, il * n_ctx * ggml_element_size(model.kv_self.v) * n_head_kv * head_dim), 0, 2, 1, 3); // changed from repeat2 back to repeat, will not support 40B! V = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_repeat(ctx0, V, repeat_dummy))); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection { cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); } } ggml_set_scratch(ctx0, {0, model.scr1_buf.size, model.scr1_buf.addr, }); struct ggml_tensor* inpFF = layernorm_output; struct ggml_tensor* attn_out = ggml_cpy( ctx0, cur, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); { cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up, inpFF); cur = ggml_gelu(ctx0, cur); cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur); } cur = ggml_add(ctx0, cur, attn_out); cur = ggml_add(ctx0, cur, inpL); // input for next layer inpL = cur; } ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, }); // norm { inpL = ggml_norm(ctx0, inpL); // inpL = ln_f_g*inpL + ln_f_b inpL = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.output_norm, inpL), inpL), ggml_repeat(ctx0, model.output_norm_b, inpL)); } ggml_set_scratch(ctx0, { 0, 0, nullptr, }); // lm_head { inpL = ggml_mul_mat(ctx0, model.lm_head, inpL); //inpL = ggml_add(ctx0, // ggml_repeat(ctx0, model.lmh_b, inpL), // inpL); } // logits -> probs //inpL = ggml_soft_max_inplace(ctx0, inpL); // run the computation ggml_build_forward_expand(&gf, inpL); ggml_graph_compute (ctx0, &gf); //if (n_past%100 == 0) { // ggml_graph_print (&gf); // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); //} //embd_w.resize(n_vocab*N); //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); // return result for just the last token embd_w.resize(n_vocab); memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); ggml_free(ctx0); return true; } #define MAX_RNG_STATE 64*1024 size_t falcon_get_state_size(const falcon_model &model) { const size_t s_rng_size = sizeof(size_t); const size_t s_rng = MAX_RNG_STATE; const size_t s_kv_size = sizeof(size_t); const size_t s_kv_ntok = sizeof(int); const size_t s_kv = model.kv_self.buf.size; const size_t s_total = ( + s_rng_size + s_rng + s_kv_size + s_kv_ntok + s_kv ); return s_total; } size_t falcon_copy_state_data(const falcon_model &model, const std::mt19937 &rng, uint8_t *dest) { uint8_t * out = dest; // copy rng { std::stringstream rng_ss; rng_ss << rng; const size_t rng_size = rng_ss.str().size(); char rng_buf[MAX_RNG_STATE]; memset(&rng_buf[0], 0, MAX_RNG_STATE); memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size); memcpy(out, &rng_buf[0], MAX_RNG_STATE); out += MAX_RNG_STATE; } // copy kv cache { const size_t kv_size = model.kv_self.buf.size; const int kv_ntok = model.kv_self.n; memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size); memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok); if (kv_size) { memcpy(out, model.kv_self.buf.addr, kv_size); out += kv_size; } } const size_t written = out - dest; assert(written == falcon_get_state_size(model)); fflush(stdout); return written; } size_t falcon_set_state_data(falcon_model *model, std::mt19937 *rng, const uint8_t *src) { const uint8_t * in = src; // set rng { size_t rng_size; char rng_buf[MAX_RNG_STATE]; memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size); memcpy(&rng_buf[0], in, MAX_RNG_STATE); in += MAX_RNG_STATE; std::stringstream rng_ss; rng_ss.str(std::string(&rng_buf[0], rng_size)); rng_ss >> *rng; assert(rng_ss.fail() == false); } // set kv cache { size_t kv_size; int kv_ntok; memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size); memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok); if (kv_size) { assert(model->kv_self.buf.size == kv_size); void * k_data = model->kv_self.k->data; // remember data pointers void * v_data = model->kv_self.v->data; // because their value is stored in buf and overwritten by memcpy memcpy(model->kv_self.buf.addr, in, kv_size); in += kv_size; model->kv_self.k->data = k_data; // restore correct data pointers model->kv_self.v->data = v_data; } model->kv_self.n = kv_ntok; } const size_t nread = in - src; assert(nread == falcon_get_state_size(*model)); fflush(stdout); return nread; } struct FalconPrivate { const std::string modelPath; bool modelLoaded; gpt_vocab vocab; falcon_model *model = nullptr; int64_t n_threads = 0; size_t mem_per_token = 0; std::mt19937 rng; }; Falcon::Falcon() : d_ptr(new FalconPrivate) { d_ptr->model = new falcon_model; d_ptr->model->ctx = nullptr; d_ptr->modelLoaded = false; } Falcon::~Falcon() { if(d_ptr->model->ctx) { ggml_free(d_ptr->model->ctx); d_ptr->model->ctx = nullptr; } delete d_ptr->model; } bool Falcon::loadModel(const std::string &modelPath) { std::mt19937 rng(time(NULL)); d_ptr->rng = rng; // load the model if (!falcon_model_load(modelPath, *d_ptr->model, d_ptr->vocab, nullptr)) { std::cerr << "FALCON ERROR: failed to load model from " << modelPath; return false; } d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); d_ptr->modelLoaded = true; fflush(stdout); return true; } bool Falcon::isModelLoaded() const { return d_ptr -> modelLoaded; } size_t Falcon::requiredMem(const std::string &modelPath) { falcon_model dummy_model; gpt_vocab dummy_vocab; size_t mem_req; auto fin = std::ifstream(modelPath, std::ios::binary); falcon_model_load(modelPath, dummy_model, dummy_vocab, &mem_req); return mem_req; } size_t Falcon::stateSize() const { return falcon_get_state_size(*d_ptr->model); } size_t Falcon::saveState(uint8_t *dest) const { return falcon_copy_state_data(*d_ptr->model, d_ptr->rng, dest); } size_t Falcon::restoreState(const uint8_t *src) { return falcon_set_state_data(d_ptr->model, &d_ptr->rng, src); } void Falcon::setThreadCount(int32_t n_threads) { d_ptr->n_threads = n_threads; } int32_t Falcon::threadCount() const { return d_ptr->n_threads; } std::vector Falcon::tokenize(PromptContext &, const std::string &str) const { return ::gpt_tokenize(d_ptr->vocab, str); } LLModel::Token Falcon::sampleToken(PromptContext &promptCtx) const { const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size()); return gpt_sample_top_k_top_p(d_ptr->model->hparams.n_vocab, promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks, n_prev_toks, promptCtx.logits, promptCtx.top_k, promptCtx.top_p, promptCtx.temp, promptCtx.repeat_penalty, d_ptr->rng); } std::string Falcon::tokenToString(Token id) const { return d_ptr->vocab.id_to_token[id]; } bool Falcon::evalTokens(PromptContext &ctx, const std::vector &tokens) const { // determine the required inference memory per token: static bool initialized = false; if (!initialized) { falcon_eval(*d_ptr->model, d_ptr->n_threads, 0, { 0, 1, 2, 3 }, ctx.logits, d_ptr->mem_per_token); initialized = true; } return falcon_eval(*d_ptr->model, d_ptr->n_threads, ctx.n_past, tokens, ctx.logits, d_ptr->mem_per_token); } int32_t Falcon::contextLength() const { return d_ptr->model->hparams.n_ctx; } const std::vector &Falcon::endTokens() const { static const std::vector out = { 11 }; return out; } #if defined(_WIN32) #define DLL_EXPORT __declspec(dllexport) #else #define DLL_EXPORT __attribute__ ((visibility ("default"))) #endif extern "C" { DLL_EXPORT bool is_g4a_backend_model_implementation() { return true; } DLL_EXPORT const char *get_model_type() { return modelType_; } DLL_EXPORT const char *get_build_variant() { return GGML_BUILD_VARIANT; } DLL_EXPORT bool magic_match(std::istream& f) { uint32_t magic = 0; f.read(reinterpret_cast(&magic), sizeof(magic)); uint32_t version = 0; f.read(reinterpret_cast(&version), sizeof(version)); if (magic != FALCON_MAGIC) { return false; } falcon_hparams hparams; f.read(reinterpret_cast(&hparams), sizeof(hparams)); // we're matching the file format of existing pre-converted models // compatible with ctransformers llama.cpp based format, which also // unfortunately shares its magic number what llama uses, so we now // differentiate by n_vocab // give some wiggle room over the max to allow for finetunes that expand the // vocabulary if (!(hparams.n_vocab >= 65024 && hparams.n_vocab <= 65100)) { return false; } if (hparams.falcon_version != 7) { return false; } return true; } DLL_EXPORT LLModel *construct() { return new Falcon; } }